
 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

29 

Distance Physical Rehabilitation System Framework 

with Multi-Kinect Motion Captured Data 

Mohammad Rafiuzzaman 
Department of Computer and Information Engineering  

Sakarya University 
Esentepe Campus, 54040, Adapazari, Turkey  

 
 

Cemil Öz, Ph.D. 
Department of Computer Engineering  

Sakarya University 
Esentepe Campus, 54040, Adapazari,  

ABSTRACT 

Visiting physical therapists to the clinics for physical 

rehabilitation in regular basis is a very long and time-

consuming trip where the final result for success is truly hard 

to see in daily training. That’s why technological development 

in traditional physical rehabilitation system is both important, 

interesting and its effects on patients’ time-management 

process is huge. In this paper we have proposed a framework 

for distance physical rehabilitation system using motion 

captured data from multiple Kinects which can interact 

directly with the patients, even grasp and track their 

movements so as to send those data back to the doctors in 

clinics using Windows Azure. Its goal is to coach patients 

through their physical therapy exercises and make those 

exercises a more enjoyable experience and bring physical 

therapy alive for them at their homes, the same way doctors 

interact with them in clinics. 

General Terms 

Motion Captured Data, Movement Recognition. 

Keywords 
Distance rehabilitation, Multiple Kinects, posture recognition, 

posture database, PCA, skeleton tracking, Windows Azure. 

1. INTRODUCTION 
With the advent of range video cameras that capture depth at 

video frame rates, like ToF 3D range cameras [24] or the 

Kinect sensor [18], now-a-days it becomes possible to observe 

deforming human postures over time and to model these 

deformations accordingly. In the past few years much work 

investigated traditional dynamic shape techniques such as 

active motion capture systems using markers [6], or marker-

less multi-view shape from silhouette for human motion 

capture and much has already been achieved regarding 

posture recognizing and modeling [5]. Improved range and 

novel imaging technology is now facilitating and significantly 

influencing these kind of modeling. A recent example is the 

very successful combination of the Microsoft Kinect sensor 

with the human motion capture system [19]. 

According to National Spinal Cord Injury Statistical Center in 

the United States, approximately 265,000 people have spinal 

cord injuries which results in partial or full paralysis [13]. 

Some clinical studies have demonstrated that some motor 

deficiencies after these kinds of spinal cord injuries can be at 

least partially or fully recovered through physical 

rehabilitations. But conventional rehabilitation training 

programs typically require professional therapists to supervise 

the patients' extensive repetitive range-of-motion and 

coordination exercises and to assess the progress. Even in the 

automated motion capture systems, until recently there has 

been the use of active or passive markers predominantly in the 

study of human movement where IR cameras and markers are 

placed on the subject. Though these systems are accurate, but 

often are very expensive and impractical to move. Before each 

capturing session, active or passive markers must be correctly 

placed on the body. Therefore, such systems are only suitable 

for laboratory settings. Wearable sensors systems are more 

suitable for ambulatory measurements in home settings as 

they are small, lightweight, mobile and less expensive [14], 

[15]. But these sensors must be placed correctly and securely 

[16], and must account for gravity, noise and signal drift [5]. 

Moreover, they require changes to the daily routine of the 

subject in the form of sanitary treatment, charging batteries 

and uploading data.  

For addressing these kinds of problems, new rehabilitation 

tools based on Virtual Reality (VR) should emerge in the 

physical therapy arena, which led us to develop a system for 

virtually monitoring physical rehabilitation programs such as 

some common physical exercises for patients having SCI or 

other physical disabilities with the help of Microsoft Kinect. 

The core idea behind our VR-based rehabilitation technique is 

to use sensing device like Kinect to capture and quantitatively 

assess the movements of patients under treatment to track 

their progress more accurately and easily. We have also tried 

to make this program as a remote system with the help of 

Windows Azure [21] so that the doctors can monitor the 

progress of physical rehabilitation program of a patient from 

their clinics, while the patients can perform their physical 

exercises in their homes with an ease.    

The rest of the paper is organized as this; we first review some 

related works in virtual motion sensing technology in Section 

2.  In Section 3 we explained our proposed approach towards 

developing our remote physical rehabilitation system. We 

then explain how we can transform our rehabilitation system 

to a remote application in Section 4. Finally, in Section 5, we 

conclude the paper with some discussions, limitations and 

future research directions of our research work. 

2. RELATED WORKS 
Creating a virtual rehabilitation system where IT specialists 

are free to imagine and set their fantasies free to invent new 

absorbing ideas helpful in this enormous world of problems, 

has expanded rapidly over the past decade. Several pros and 

cons of advances in vision-based human motion capture 

system have been shown in [11]. Virtual environment have 

been also useful for dismounted soldier training using 

multiple Kinects, for showing the capability of low cost, non-

obtrusive solutions for soldier training [9]. Though a solution 

for fusing skeletal data from multiple Kinects to provide 

complete coverage of a user was successfully demonstrated in 

there; but the condition of having a sign attached with the 

body to indicate that the person is facing forward the sensor in 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

30 

their Orientation Based Data Fusion system was definitely a 

drawback as it limits a person’s movement. Kinect has also 

been used to analyze human gait in [8] but they have not used 

a complete physical interaction system as they have used in-

shoe pressure sensor and a gyroscope which also limits free 

movements. In [12] the authors also tried to come up with a 

virtual rehabilitation technique using Kinect, but they have 

showed a comparison between the OptiTrack optical system 

and Kinect and in the end they have shown the superiority of 

the OptiTrack optical system over Kinect which is not true in 

all the cases as described in our framework.  

In order to reduce the probability of missing some degree of 

freedom (DOF) due to occlusion and noises while capturing 

normal movements, [3] proposed to use a motion database 

almost similar to our database system to get the best matched 

posture from them. But as most of the other approaches they 

missed to get the whole body rotation of the user because of 

the use of a single Kinect sensor. As a result, the database 

posture matching process becomes inaccurate as the number 

of joints recognized by Kinect is dropped significantly. This is 

one of the reasons that we have used four different Kinects to 

capture human posture in our proposed framework.  

The accuracy and robustness of Kinect based rehabilitation 

technique have been tested on [7], where they have presented 

the problems which occur due to noise and occlusion while 

capturing data with Kinect.  In order to overcome this 

problem we have proposed to use a custom made posture 

database (PDB) with which we can replace the missing 

information from the data that we have captured. Also with 

the help default skeleton tracking mode as well as seated 

skeleton tracking mode we hope to recognize the accuracy of 

the body tracking to great extent as the tracking in seating 

position is especially relevant in the rehabilitation context as 

patients may be bounded to a wheelchair or disable to stand-

up.  

3. EXPERIMENTAL PROCEDURE 
For developing our remote VR-based physical rehabilitation 

system we have come up with the following steps: 

3.1 Capturing color images from the Kinect cameras 

3.2 Capturing the depth data 

3.3 Tracking the human skeleton 

3.4 Recognizing different physical exercises 

3.5 Developing the system using multiple Kinects 

All of these steps are discussed in details in the followings:  

3.1. Capturing color image from the 

Kinect camera 
The first step towards our motion capture system is the 

acquisition of color image stream from the Kinect. An image 

stream is nothing but a succession of still image frames. 

Normally Kinect can deliver the still image frame within a 

range of 12 to 30 frames per second (fps) [4]. 

In order to get any color frame from the sensor we have used 

the Event Model [22] of Kinect sensor. Using the Event 

Model, the Kinect sensor sends the frame to the application 

whenever a new frame is captured by the sensor. For doing 

that we have subscribed to the specific event handler where 

the incoming frames are needed to be processed. But before 

subscribing to the event handler, we have fixed the color type 

and resolution of image streams that we are looking for. Once 

it's subscribed to, the sensor will send the data continuously 

unless the channel is disabled, unsubscribed or the sensor is 

stopped. In short capturing the color image stream from the 

sensor and displaying it to the UI can be done by following 

these steps: 

3.1.1 Enabling the color stream channel with an image 

format 

3.1.2 Attaching the event handler with the stream channel 

3.1.3 Processing the incoming image frames 

3.1.4 Rendering the image frames on the UI 

3.1.5 Monitoring the sensor status 

3.1.6 Performance enhancement – Memory allocation 

The basic operations of these steps in depicted in figure 1 

while their discussions are given below in details: 

3.1.1 Enabling the color stream channel with an 

image format 
When the sensor is running and the color stream is enabled, it 

will initialize the Kinect sensor to generate a stream of color 

images. After that we are going to use an overloaded method 

that accepts Color Image Formats as an argument. 

3.1.2 Attaching the event handler with the stream 

channel 
After enabling the color stream channel, the sensor has to be 

informed about what to do when it has captured a new image 

frame. To achieve this, we have fixed an event handler that 

has to be attached to the sensor stream channel. 

 

1. Enabling the color stream channel 

2. Application subscribes to the image stream channel 

3. Images are processed and transferred to the application 

4. Rendering the image frames on the UI 

 

Fig 1: Capturing color image from the Kinect camera 

Stream Channel Application 

1 
2 

Kinect 

Sensor  
3 

Color 

Image 

Frames 

4 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

31 

3.1.3 Processing the incoming image frames 
Once the event handler is called, it means there is a new frame 

that has been sent by the sensor and it is time to process it. 

Whenever there is a new frame sent by the sensor, this event 

handler in the: 

--First step, reads the image frame. 

--Second step, we have performed a null detection on the 

incoming image frame. This is just to make sure that if there 

is any dropped frame in between frames, so that the 

application can take care of it.  

--Third Step, we have calculated the size of the incoming 

frame.  

--Fourth Step, we have created a bitmap image source with 

the incoming image frame and assigned the same in the image 

control. 

All of this is for a single image frame; a similar succession of 

similar image frame operations produces the image stream. 

3.1.4 Rendering the image frames on the UI 
After this we will display the frames in the UI. While we were 

creating Bitmap Source from the image frame, most of the 

rendering part within the event handler were already been 

done. 

3.1.5 Monitoring the sensor status 
Of course as a common job for all the applications, starting 

the sensor before the sensor starts producing image frames 

and stopping and monitoring the sensor status will also be a 

common job for us. 

3.1.6 Performance enhancement – Memory allocation 
The image frames are stored into a buffer before they are used 

by the application. Normally the image processing in Kinect 

happens up to 30 frames per second [4]. This means that 

memory allocation and clean-up is happening around 30 times 

per second. This makes performance trail, as if there is any 

delay in reading the buffer data and rendering it as images, the 

buffer will fill with a new image frame by discarding the old 

frame data. The unprocessed frames will be dropped, which 

means the image frames will be lost, and the frame rate will 

be decreased.  

To solve this and make our application perform better, we 

have used the alternative way where we have allocated the 

memory for the image frames at once and updated only the 

pixel data on frame change. In this way we improved the 

performance by reducing the memory consumption as well as 

memory allocation and de-allocation. 

3.2. Capturing the depth data 
After capturing the color frames from Kinect camera we are 

going to capture the depth data in a similar fashion as 

capturing the color frames. However, the working principle of 

the depth sensor and information returned by the depth sensor 

are totally different than that of the color camera. Each color 

frame consists of numbers of pixel values, which give the 

values of red, green, and blue color components; whereas 

each pixel’s information in the depth data represents the 

distance of an object from the sensor. 

Depth information data will be captured using General Stereo 

Triangulation [10] system where two images from IR depth 

sensor and IR laser are used to obtain the two different views 

on a scene and combined to get one view similar as human 

binocular vision.  

After that we are going to calculate the distance from the 

depth data. The Kinect sensor returns 16-bit raw depth frame 

data [4]. The first three bits represent the identified person and 

the remaining 13 bits give the measured distance in 

millimeters. So from the 16-bit data we will perform a bitwise 

shift operation(>>) to move the bits to the upper 13 bits to get 

the distance as shown in figure 2. 

3.3. Tracking the human skeleton 
When we talk about how to build an application that interacts 

with human body motion, first of all we need to capture the 

information about the users standing in front of the Kinect 

sensor, and from there skeleton tracking comes into picture. 

Our complete skeleton-tracking feature is built on the depth 

data processing, internal machine learning and color vision 

algorithms. Figure 3 shows the overall process flow diagram 

for capturing skeleton data, while the following steps explain 

them: 

3.3.1 Depth data is processed in the rendering pipeline 

process and matches with the database labeled data 

(discussed later) and generates the inferred body 

segments. 

3.3.2 Once all parts are identified based on the labeled data, 

the sensor identifies the body joints. 

3.3.3 The sensor then calculates the 3D view from the top, 

front, and the left of the found joints. 

3.3.4 Then the sensor starts tracking the human skeleton 

and body movement based on the proposed joint 

points and the 3D view.  

 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

Person Distance (mm) 

Person Identification 

Bitwise Shift Operation(>>) 

Fig 2: Calculating user identification and distance from the sensor using depth data 
 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

32 

 

All of these steps are considered for Default-Skeleton tracking 

mode. We have also considered Seated-Skeleton tracking 

mode where we have marked all the lower body parts' joints, 

including Hip Center and Spine as Not Tracked. Seated-

Skeleton tracking mode has been used for patients who are 

bounded to wheelchairs or having other disabilities to stand 

up. 

3.3.5 Performance enhancement - Skeleton 

smoothing 
Skeleton joint movements are not that smooth and because of 

processing large amounts of data over a period of time, during 

skeleton tracking there comes some jitters. This shaky 

movement of skeleton data does not provide a good end user 

experience and we need to overcome this problem to enable a 

rich user experience.  

In order to do that, we have set the smoothing parameters [27] 

while setting up the skeleton stream data. The smoothing 

parameters like, Correction, Smoothing, JitterRadius. 

MaxDeviation Radius, Prediction [20] solves the jittering 

problem by filtering the skeleton data and applying a 

smoothing algorithm to it.  

Holt double exponential smoothing [26] procedure has been 

also used with smoothing parameters to reduce the jitters from 

skeletal joint data. In order to make a forecast, the exponential 

smoothing is applied to a series of time-based data. The 

skeleton engine returns the skeleton frame in a regular time 

interval. The smoothing algorithm applies to each set of data 

and calculates a moving average based on the previous set of 

data. It uses the values passed by the smoothing parameters, 

during the calculation of moving average. 

3.4. Recognizing different physical 

exercises 
After tracking the human skeleton as discussed in the previous 

section we will start to recognize different human movements 

or postures so that our system will be able to recognize 

physical exercises done by the patients. For this purpose we 

have divided our total system into two different sections, 

where one section will be used for basic posture recognition 

system for recognizing basic physical exercises using linear 

algebraic calculations and the other section is going to be used 

for advanced posture recognition system to recognize advance 

physical exercises by constructing posture database and 

matching them with the postures captured from Kinect. 

3.4.1 Basic posture recognition system 
The core idea behind our basic posture recognition system is 

to calculate skeleton's joint points as shown in the previous 

section and apply basic logic to recognize some basic 

postures. This kind of recognition depends on some pre-

A (X1, Y1) 

D 

B (X2, Y2) 

A (X1, Y1) 

D 

B (X2, Y2) 

C (X2, Y1) 

X2 – X1 

Y2 – Y1 

√{(X2 – X1)2 + (Y2 – Y1)2} 

) 

X 0 

Y 

X 0 

Y 

Fig 4: Measuring the distance between two joints 

2.1. Enable the 

skeleton stream 

channel 

 

 

3.1. Read and 

progress the 

skeleton 

frame 

4.1. Map and 

scale the joints 

2.2. Attach the 

event handler for 

skeleton 

tracking 

3.2. Check for 

tracked 

skeleton 

 

4.2. Display 

it on UI 

 

1. Check for the 

Kinect sensor if 

it is connected 

2.3. Start the 

sensor 

Fig 3: Steps to track the human skeleton 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

33 

defined set of conditions, known as the result set. If the 

performed action is matched with the result set, we can say 

that the user has performed a certain posture, otherwise not. 

In the coordinate system of our system each skeleton joint is 

measured in the three-dimensional (X, Y, Z) plane. X and Y 

coordinates indicate the joint location in the plane, and Z 

coordinate indicates how far the joint is from the sensor. The 

X axis of the joint will change if the joints move from the 

right hand side to the left hand side or vice versa. Similarly, 

the value of the Y axis will change for moving joints in the 

upwards or downwards direction. Forward or backwards 

moving of the joints from the sensor will be reflected by the 

Changes in the Z axis. 

In our proposed framework calculations for the basic posture 

recognition is done by: 

3.4.1.1 Measuring the distance between different joints. 

3.4.1.2 Measuring the joints’ positions and the deviation 

between the joints' positions. 

3.4.1.1 Measuring the distance between different 

joints 
As depicted in figure 4, we have used Pythagorean Theorem 

[15] to calculate the distance between two joints. Here the 

value of "D", the distance between points A and B, will be the 

hypotenuse of the right-angled triangle that was formed by the 

points A, B, and C which can be calculated using following 

formula: 

2

22

C),  Bof (Distance                                              

+C), A of (Distance= D)of (Distance

 (1) 

})Y1)-(Y2+X1)-({(X2=D 22
 (2) 

This same formula works well for three dimensional planes as 

the distance between points (X1, Y1, Z1) and (X2, Y2, Z2) 

can be calculated by the following formula: 

})Z1)-(Z2+Y1)-(Y2+X1)-({(X2=D 222

(2) 

Using this simple formula we can recognize some simple 

physical exercises like Virtual Rope Workout or Hand 

Swiping as depicted in figure 5 by calculating the distance 

between two points. 

 

 

X3, Y3 
(Left Hand 

Target Point) 

Y3 > Y1 + 
T 

X2, Y2 

(Right Hand 
Target Point) 

X1, Y1 

(Reference 
Point) 

Y2 > Y1 + 
T 

 

T (Threshold) T (Threshold) 

X 0 

Y 

Fig 6: Calculating the joints' positions and the deviation between 

the joints' positions 

A

. 

D D 
-D 

D 

D 
D 

B

. 

Fig 5: Detecting Virtual Hand Swiping exercise and B. Rope Workout 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

34 

3.4.1.2 Measuring the joints’ positions and the 

deviation between the joints' positions 

Though we can recognize a lot of simple physical exercises in 

our basic posture recognition system with the preceding 

procedure, but to recognize some other exercises which need 

physical movements with respect to some fixed body parts, 

we need to make some further calculations. For example Hand 

Raising exercise where either both hands or only left or right 

hand of a person needs to be raised above his/her head with 

respect to the head joint. 

In this case, the posture recognition of our system involves 

three different joints; namely, the head, right hand, and left 

hand. We cannot recognize these gestures by just calculating 

distances between these three joints; rather, we need to 

measure the joint positions with respect to the coordinate 

plane. 

Suppose we want to detect if both the hands are raised above 

the head. On the coordinate plane, movement of the hands in 

either to upwards or to downwards direction will be based on 

the Y axis. As a reference point for the other two hand joint 

positions, we have considered the Y axis of the head joint 

position as the reference point. The other two hand joint 

positions have been considered as the target points. Then we 

have compared the values of both the targeted joints' Y axis 

movement with respect to the reference points. Once the 

targeted value crosses the reference point, we say that the 

posture is identified and the exercise has been done. A 

threshold value (T) with reference points have been also used 

to make sure that the targeted joints are crossing as we have 

expected. The calculation process is depicted in the figure 6 

and an example of hand rising exercise is depicted in figure 7. 

3.4.2 Advanced posture recognition system 
Though we can recognize several exercises done by the 

patients with our basic posture recognition system, we also 

need advanced posture recognition system to recognize 

physical exercises involving more complex skeleton joints’ 

movements like Depth Squad Exercise from standing and a 

Walk and Run Exercise on a gateway treadmill etc. In this 

recognition system, some predefined postures are first 

recorded and stored and while matching them, the same set of 

user actions are taken as input parameters and validated 

against the stored data. The final result is driven by 

calculating the sum of squared differences between the 

existing posture data set and the posture data set that is 

currently being performed. Overall, the advanced posture 

recognition system involves the following steps: 

3.4.2.1 Constructing the Posture Database (PDB), 

3.4.2.2 Comparing Kinect postures with PDB postures and 

3.4.2.3 Generating a resultant set of estimated postures. 

3.4.2.1 Posture Database construction 
Our Posture Database (PDB) has been constructed with 

postures captured from a commercial optical motion capturing 

system. But in order to reduce the computational complexity 

we have removed the global rotation along the vertical axis 

and global 3D translation of the postures for normalization.  

In our proposed PDB we are going to represent each posture 

by a set of joint positions D(P). For removing the similar 

postures and thus increasing the efficiency of run-time PDB 

searches, we have calculated the sum of squared differences 

of joint positions and if the difference among them is smaller 

than our predefined threshold values then we are going to 

remove them. 

Postures which should be recorder and stored in our PDB 

depend on the desired application of the system. We are going 

to construct our PDB with only those postures of exercises 

that the users i.e. patients are expected to perform. In this way 

our proposed system is also going to reduce the space 

complexity.  

3.4.2.2 Posture comparison and detection 

 

Reference point 

T T 

L target point R target point 

Reference point 

T 

L target point 

T 

Reference point 

R target point 

Reference point 

Fig 7: Hand raising exercise. 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

35 

 

We are going to denote the joint positions obtained during 

run-time from Kinect as K(P). After retrieving it, from the 

PDB we are going to retrieve the best matched posture D(P) 

according to K(P). Posture detection and posture comparison 

works side-by-side. While the user is actually performing the 

action, data can be matched multiple times to see if it is 

matching correctly. As data storage, we have proposed to use 

XML file system. 

3.4.2.3 Generating the resultant set of estimated 

postures 
As there exists an intrinsic redundancy among the joints in the 

postures, if we are going to consider D(P) and K(P) as two 

point clouds and start the motion comparison [1] among them 

then it is going to reduce the computational speed. In order to 

overcome this complexity in our framework we have 

proposed to reduce the posture dimensionality by using PCA 

[2] and thus improve the performance of the database queries.   

As a result the postures in PDB, D(P) is going to be reduced 

into Dr(P) and during run-time the postures K(P) captured 

from Kinect will be reduced into Kr(P) by the projection 

matrix calculated by PCA. After that we are going to conduct 

a search among Dr(P) and Kr(P) and find out the most similar 

postures among them by calculating their sum of squared 

differences. In this way we are going to find out our resultant 

set of estimated postures E(P). 

During run-time, if a joint is missing in the posture obtained 

from the Kinect due to occlusion, noise or limited capture 

volume, we are going to consider that joint position to be the 

mean value of that same joint from all the same postures in 

the PDB and compose  E(P) accordingly. Figure 8 shows all 

of these operation needed posture database construction, 

posture comparison and posture detection. 

3.4.3 Constructing the posture recognition engine 
After retrieving the postures performed by the user we need to 

validate if the postures are performed correctly or not. For this 

purpose we have constructed a posture recognition engine 

with the following steps: 

a) Start 

b) Posture validation 

c) Predefined rules 

d) Finish 

As depicted in figure 9, to start with recognizing any posture, 

there will always be an initial position, we call it the "start" 

position. This is the entry point for any posture and has to be 

validated before validating other positions.  

Once the start position is validated and the posture for any 

kind of exercise is being performed by the end user, every 

single frame has to be validated under the predefined "rules" 

for the particular posture types by matching them with the 

PDB. In our system we have proposed to set up these rules by 

the physical therapists with some predefined exercises for 

physical therapy.  

Storage 

PDB 

User 

Postur

es 

Capture using 

Commercial 

Optical Motion 

Capture System 

Record 

Postur

e D(P) 

PCA 

Reduced 

Postures 

Dimensionality 

Dr(P) 

Data 

Normalization 

Metadata 

Creation 

PDB Constructing 

Generating 

E(P) 

Validating 

Metadata 

 Comparing 

Dr(P) & Kr(P) 

 

Data Matching 

Postures 

Recognition 

Engine 

Reduced 

Posture 

Dimension 

Kr(P) 

PCA 

User 

Action 

K(P) 

Kinect 

Posture 

Tracking 

Fig 8: PDB Construction, Posture comparison and detection 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

36 

 

If any of these rules fail to satisfy during the complete 

execution cycle, we will stop the posture tracking and wait for 

it to start again.  

Finally, there is a condition that triggers the end of the posture 

and "validates" the final position, which indicates that posture 

recognition is finished. We have also put a limitation Max for 

the number of repeat and try of exercises to avoid an infinite 

loop. This number can be set by the patients in their user 

interface of the system. 

e) Performance enhancement - Making posture 

recognition engine more flexible 
To make the posture recognition engine perform softer we 

further break down the complete predefined rules block into 

multiple smaller modules, and call it the "phases". Each phase 

of a posture will have its own result set that measure the 

success or failure of that phase. The result of the phases will 

be dependent on each other, which means recognition will 

move to the next phase if the previous phase result was 

passed.  

It may occur that all the rules in a phase are not satisfied. But 

this does not always mean that the phase has failed, instead it 

could be that the user is "on hold" or "in progress" on that 

particular position for some time. In these kind of scenarios 

we mark the state of those phases as pause and wait for the 

next action for a few frames. These phases can communicate 

with one another using Inter Phase Communication, to share 

the information, result, and data with each other.  

3.5. Developing the system using 

multiple Kinects 
As depicted in figure 10, in order to remove the restriction for 

the user to face forward to the sensor like traditional Kinect 

based motion capturing systems and to see a user from most 

of the available angels, we have proposed to use four Kinect 

sensors in our system.  

Another reason for using multiple Kinects in our system is 

failover. Failover is used to make the system more fault-

tolerant by providing automatic switching to a redundant or 

standby system. If we consider Kinect as a system then it 

could happen, that one system fails (power turns off or gets 

disconnected) and the application fails to capture data. In such 

a situation, we can start the other connected sensors 

automatically to capture data and turn it off once the first 

device starts again. The other reasons for using multiple 

Kinects for our system are: 

a) Capturing data from a specific sensor. 

b) Giving full freedom of orientation of the user within the 

training area.   

c) To reduce the percentage of failed joint estimation as 

Kinect works best when faced frontally. 

Four camera tripods are used with four Kinect sensors to 

provide stability and adjustability for different person's height 

and pointing angle for finding out the precise direction of the 

user. The working procedure for handling multiple Kinects 

are as follows:  

3.5.1 Using multiple USB Controllers: 
Kinect for Windows SDK supports at most four Kinect 

sensors to plug into a single system [4]. But Kinect sensors 

consume a good amount of bandwidth of the USB port; hence, 

more than one Kinect can't be operated by a single USB 

Controller. While we were working with multiple Kinects, we 

have used external USB Controllers to uniquely handle each 

individual Kinects to overcome such scenarios.  

Start Kr(P) 

Validation 

Start Condition 

Validation 

End Condition 

Rules 

1 

Rules 

2 
Rules N 

Validity Checking 

Gesture Recognized End 

Not 

Validated 

Validated  

Validated  

Fig 9: Posture recognition engine 

Not 

Validated 

Max >= 

Limit? 

No 

Yes 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

37 

 

3.5.2 Reducing interference: 
In order to handle multiple Kinects we have to handle 

interference. We know that Kinect measures the depth data by 

reading the IR patterns projected by an IR emitter [4]. When 

there are multiple sensors placed in the same area the 

projected IR from the multiple sensors can interfere with one 

another where Kinect sensors return incorrect data, as the IR 

laser is not modulated. 

To overcome such scenarios we have used the Shake 'n' Sense 

technology [17]. Using Shake 'n' Sense, we can just shake the 

Kinect sensors a little bit so that the position of the IR dots is 

moved. As a result the IR points are moved a bit and the 

sensor can read the data on every move. Generally this shake 

is done by an external motor. 

3.5.3 Accessing individual sensors 
Each individual sensor has been identified by the position 

index of the sensors. For example the index starts with 0, 

which indicates the first device. Some basic information such 

as device ID, status, and connection ID from the individual 

Kinect sensors also have been used in order to access them. 

3.5.4 Capturing data using multiple Kinects 
After connecting the sensors properly and accessing them 

individually we will start to capture data from them. Almost 

similar as capturing color and depth data stream from a sensor 

as discussed in the previous sections, we will follow the 

following steps for capturing data from multiple Kinects:  

a) Identifying the individual Kinect sensors. 

b) Attaching the event handler to the individual Kinect 

sensors. 

c) Handling the events for the attached event handler. 

d) Checking the sensor status and controlling the start and 

stop based on the requirements. 

We have iterated through the collection of devices and added 

the required information into our custom collection. The 

overall implementation has been same as we did for 

individual Kinect sensors, except identifying and attaching an 

event handler for each particular sensor. A fusion system is 

used to combine all the data received from multiple Kinects in 

order to get a single combined scenario.  

4. RESULT PROCESSING: MAKING 

THE APPLICATION A REMOTE 

SYSTEM 
The final aim of our proposed approach is to send the results 

of the exercises done by the patients with our proposed 

physical rehabilitation system to the cloud so that the doctors 

from the hospitals can monitor them. In this section we are 

going to discuss how we have designed our system for this 

purpose so that it can upload done physical exercises of the 

patients in a video format to the cloud using Windows Azure 

Media Services [23].  

Windows Azure Media Services is a scalable media platform 

for distributing content to any screen, on any network. It 

offers a collection of components and technologies from 

Microsoft and third parties to enable end-to-end media 

solutions, leveraging on Windows Azure platform [23]. In 

order to connect our system to the Windows Azure and 

transfer the physical exercises of the patients to the hospitals 

in a video format we have used the following steps: 

4.1 Media (video) creation    

4.2 Media (video) processing 

4.3 Media (video) delivery 

4.4 Media (video) consume 

These steps are shown in figure 11 where the descriptions are 

given below: 

4.1. Media (video) creation 
After getting the exercises done by the patients from our 

fusion system we are going to convert them into video files in 

order to send them to the cloud using Windows Azure. 

4.2. Media (video) processing 
Video makes up a large amount of internet traffic. So 

uploading the videos and watching them with a good speed is 

a problem that on-demand video applications often face. With 

some collection of components [23] in media processing as 

shown in figure 11 Windows Azure Media Services solves 

this problem. Those components are given below with their 

functions in our system: 

4.2.1 Media ingest 

4.2.2 Encoding 

4.2.3 Content protection 

4.2.4 Media streaming 

4.2.1 Ingestion 
This allows our system to upload content into the cloud. Two 

things have to be concerned in this component: 

--Speed: Video content for the recognized physical exercises 

might be very large. In order to handle this large volume data 

as well as maintain a good speed for video streaming we have 

used HTTPS Delivery for ingestion in our system. 

Kinect 

Device[2] 

Kinect 

Device[3] 

Kinect 

Device[1] 
Kinect 

Device[4] 

USB[2] 

USB[1] 

 

USB[3] 

USB[4] 

Fusion 

System 

Fig 10: Full system orientation using multiple Kinects 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

38 

 

--Security: AES 256bit CTR mode has been used for 

encryption and HTTPS for all the communication. With this 

we make sure that our video contents are securely delivered to 

the Blob storage [25]. 

4.2.2 Encoding 
This scheme allows us to compress Video into different 

formats. In our system we have picked up the brain of 

Microsoft Expression Encoder. But instead of using this 

desktop application, we have used Windows Azure Media 

Encoder in the cloud.  

4.2.3 Content protection 
It provides DRM (Digital Right Management) solution for 

content protection. For our remote system we have used 

MPEG Common Encryption for the content protection.  

4.2.4 Media streaming 
For on-demand video streaming we have uploaded your 

encoded content into Origin Server [23] which supports .Mp4, 

Smooth Streaming and HLS.  

4.3. Media (video) delivery 
After processing the videos, they are delivered to the Azure 

cloud storage. After that the Origin Service processes the 

outbound stream from storage to CDN (Content Delivery 

Network). This component consists of: 

a) Content server: Pulls content from storage and delivers 

it to CDN. 

b) Caching: Reduces load on Channels and Storage. 

c) Content encryption: Keeps content protected. 

d) Dynamic packaging: Stores media in one multi-bitrate 

format (MP4 for our system) and converts to the format 

requested by the clients i.e. doctors from the hospitals.  

For communicating with Azure Storage we have used the 

REST API [25] as it allows us to transfer content over a REST 

protocol without worrying about the platform. 

4.4. Media (video) consume: 
After delivering the media it can be consumed by the 

receivers i.e. doctors from the hospitals. Since both HLS and 

Smooth Streaming are transmitted through Http with small 

fragments, it is easier to utilize CDN (Content Delivery 

Network) for scaling delivery of video content worldwide 

which we have used in our system. 

5. DISCUSSION AND CONCLUSION 
The outcome of our proposed system in this paper is believed 

to be a methodology for better assessment of the functional 

outcome of physical rehabilitation techniques for functionally 

disabled patients. It could also have a direct impact on the 

way future interventions are planned and performed. 

Continuation of the study on this project could, over time, 

improve the way these operations are carried out; the effect on 

rehabilitation time, the time spent in hospital, the improved 

range of stable motions and positional accuracy and 

measurement. Though the implementation with the 

measurement of accuracy and robustness of our proposed 

system is yet to be done, we believe the remote physical 

rehabilitation application like the one we have presented in 

this paper, in the longer term will provide a large amount of 

improvement regarding the effect of the relative and absolute 

function of the SCI problems, especially on the joint stability, 

relative and absolute displacements. Our proposed new 

remote physical rehabilitation system will also potentially 

 

Windows 

Azure SDK 

Kinect for 

Windows SDK 

Kinect Sensor 
Exercises 

done by the 

patients 

Video 

creation 

 

Encoding Media ingest 

Video processing 

Content 

protection 

Media 

streaming 

Delivering 

the video 

Azure Storage 

CDN 
Consumers 

(Clinicians in 

their clinics) 

Fig 11: Using Widows Azure Media Service to send our physical rehabilitation 

system data to a remote location. 

Origin server 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 1 – No.5, April 2015 – www.caeaccess.org 

 

39 

offer better functionality and easy accessibility, due to 

reduced complexity, thus potentially reducing the cost of 

physical therapy systems to the hospitals. Accurate virtual gait 

analysis, another possible function of our proposed system, 

also results in better assessment of the functional outcome of 

such operations and can be used against national benchmarks 

in order to inform on ways to reduce costs and rehabilitation 

times. 

6. REFERENCES 
[1] L. Kovar, M. Gleicher, and F. H. Pighin. Motion 

graphs.ACM Trans. Graph., 21(3):473–482, 2002. 

[2] Lindsay I Smith. A tutorial on Principal Components 
Analysis. February 26, 2002. 

[3] Hubert P. H. Shum, Edmond S. L. Ho. Real-time 

Physical Modelling of Character Movements with 

Microsoft Kinect. VRST’12, December 10–12, 2012 

ACM 978-1-4503-1469-5/12/12. 

[4] Microsoft Corporation. Kinect for windows SDK 

programming guide version 1.5. 2012. 

[5] H.J. Luinge and P.H. Veltink. Measuring orientation of 

human body segments using miniature gyroscopes and 

accelerometers. Medical and Biological Engineering and 
Computing, 43(2):273–282, 2005. 

[6] C.-C. Yang and Y.-L. Hsu. A review of accelerometry-

based wearable motion detectors for physical activity 

monitoring. Sensors, 10(8):7772–7788, 2010.  

[7] StepanObdrzalek, GregorijKurillo, FerdaOfli, 

RuzenaBajcsy, Edmund Seto, Holly Jimison and Michael 

Pavel. Accuracy and Robustness of Kinect Pose 

Estimation in the Context of Coaching of Elderly 

Population. National Science Foundation (NSF) grant 

1111965 and by Grant Number HHS 90TR0003/01, 
2012. 

[8] Moshe Gabel, Ran Gilad-Bachrach, Erin Renshaw and 

Assaf Schuster. Full Body Gait Analysis with Kinect. 

The Department of Computer Science, Technion – Israel 

Institute of Technology. 

[9] Brian M. Williamson and Dr. Joseph J. LaViola Jr. 

Multi-Kinect Tracking for Dismounted Soldier Training. 

Interservice/Industry Training, Simulation, and 
Education Conference (I/ITSEC) 2012. 

[10] SB Pollard, JP Frisby. Transparency and the uniqueness 

constraint in human and computer stereo vision. 

Nature 347, 553 - 556 (11 October 1990); 
doi:10.1038/347553a0  

[11] ChanjiraSinthanayothin, NonlapasWongwaen, 

WisarutBholsithi, Skeleton Tracking using Kinect Sensor 

& Displaying in 3D Virtual Scene, International Journal 

of Advancements in Computing Technology(IJACT) 

Volume4, Number11, June 2012. 

[12] Chien-Yen  Chang,  Belinda  Lange,  Mi  Zhang,  

Sebastian  Koenig, Phil  Requejo,  NoomSomboon,  

Alexander  A.  Sawchuk, and Albert A.  Rizzo. Towards 

Pervasive Physical Rehabilitation Using Microsoft 

Kinect. 2012 6th International Conference on Pervasive 

Computing Technologies for Healthcare 
(PervasiveHealth) and Workshops. 

[13] National Spinal Cord Injury Statistical Center.  

Spinalcord injury facts and figures at a glance.  
Birmingham, Alabama, February 2011. 

[14] K.J. O’Donovan, B.R. Greene, D. McGrath, R. O’Neill, 

A. Burns, and B. Caulfield. SHIMMER: A new tool for 

temporal gait analysis. In EMBC, pages 3826–3829, 

2009. 

[15] Eli Maor. The Pythagorean Theorem: a 4,000-year 
history. 2007 - books.google.com 

[16] J. J. Kavanagh and H. B. Menz. Accelerometry: a 

technique for quantifying movement patterns during 
walking. Gait & Posture, 28(1):1–15, 2008. 

[17] DA Butler, S Izadi, O Hilliges, D Molyneaux, S. Hodges, 

D. Kim. Shake'n'sense: reducing interference for 

overlapping structured light depth cameras. CHI 

'12 Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems. Pages 1933-1936. 

ACM New York, NY, USA ©2012. ISBN: 978-1-4503-

1015-4 doi>10.1145/2207676.2208335 

[18] Microsoft, “Kinect,” 2010. URL: 

http://www.xbox.com/en-us/kinect (accessed March 7, 
2012). 

[19] K. Khoshelham and S. O. Elberink, “Accuracy and 

resolution of kinect depth data for indoor mapping 

applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 

2012. 

[20] Denis, L.  Tupin, F. ; Darbon, J. ; Sigelle, M. Joint 

Filtering of SAR Interferometric and Amplitude Data in 

Urban Areas by TV Minimization. Geoscience and 

Remote Sensing Symposium, 2008. IGARSS 2008. IEEE 
International (Volume: 5). 7-11 July 2008 

[21] Blogs.technet.com. 2010-02-01. "Windows Azure 

General Availability - The Official Microsoft Blog - Site 
Home - TechNet Blogs" Retrieved 28-05-2013. 

[22] Carlos F. Crispim-Junior, Baptiste Fosty, Rim 

Romdhane, Qiao Ma, Francois Bremond, Monique 

Thonnat. Combining Multiple Sensors for Event 

Recognition of Older People. MIIRH’13, October 22, 
2013, Barcelona, Spain. 

[23] Jie Li ;  Humphrey, M. ; References. eScience in the 

cloud: A MODIS satellite data reprojection and reduction 

pipeline in the Windows Azure platform. Parallel & 

Distributed Processing (IPDPS), 2010 IEEE International 

Symposium on. 19-23 April 2010 

[24] Reinhard Koch, BogumilBartczak, AnatolFrick, 

BogumilBartczak, AnatolFrick, FalkoKellner and Ingo 

Schiller. Time-of-Flight-Range and Color Camera 

Systems for 3D-TV and Augmented Reality 

Applications. Institute of Computer Science Christian-
Albrechts-University of Kie. 

[25] Chappell, David. Introducing Windows Azure. 
Microsoft. October 2008.  

[26] Prajakta S. Kalekar. Time series forecasting using Holt-

Winters Exponential Smoothing. 

www.it.iitb.ac.in/~praj/acads/seminar/04329008_Expone

ntialSmoothing.pdf December 6, 2004. 

[27] Prof. Dr. W.Toporowski, Institutfür Marketing & Handel 

Abteilung Handel. Smoothing methods.  

https://scholar.google.com.tr/citations?user=k92lonkAAAAJ&hl=tr&oi=sra
https://scholar.google.com.tr/citations?user=hkCVqYkAAAAJ&hl=tr&oi=sra
https://scholar.google.com.tr/citations?user=-epU9OsAAAAJ&hl=tr&oi=sra
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4780131&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4780131&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4780131&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4780131&tag=1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jie%20Li.QT.&searchWithin=p_Author_Ids:37405665000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Humphrey,%20M..QT.&searchWithin=p_Author_Ids:37276435000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Agarwal,%20D..QT.&newsearch=true

