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ABSTRACT 

In this paper, major speech features used in state-of-the-art 

technology in speech recognition research are reviewed. Also a 

brief review of major technological advancements during last 

few decades and a trend towards development of robust speech 

recognition system in terms of feature and model adaptation 

techniques is given. It has been the dream of researchers to 

develop a machine that recognizes speech and understands 

natural language like human but the reality is that the 

performance of the speech recognition system drastically 

degrades due to various adverse conditions like noise, variability 

in speaker, channel, device and mismatches in training and 

testing. This paper may be useful as a tutorial and review on 

state-of-the-art techniques for feature selection, feature 

normalization and model adaptation techniques for development 

of robust speech recognition system.  

General Terms 

Automatic Speech Recognition (ASR), Robust ASR, 

Normalization, Adaptation and Hybrid model. 

Keywords 

Spectral, Cepstral Features, Feature Enhancement, 

Compensations, Model Adaptation and Hidden Markov Model. 

1. INTRODUCTION 
Speech is the primary means of communication. It carries many 

information apart from the intended meaning for which it is 

uttered. The information like gender identity, probable age 

(child or adult), emotions, health conditions of the speaker, 

direction, contextual meaning, language information etc. are also 

carried by the speech signal apart from its intended meaning. 

The desire to develop a machine that understands human speech 

and interact with human in one’s own language has been the 

driving force for the researches and technological developments 

in the field of Automatic Speech Recognition (ASR). Although 

lot of works and progresses have been made by various 

researchers around the world towards development of robust 

speech recognition system [1-3], it is still a distant dream to 

build an Automatic Speech Recognition system (ASR) that not 

only recognizes speech but also understands the natural 

language like human being. Various researchers have been 

working for convergence of technology towards development of 

universal system that recognizes any speech and robustly 

perform under different variability and other adverse 

environments.  

There are two major activities in speech recognition research in 

present day technology: Front end analysis (signal modeling) 

and statistical modeling. Front end analysis represents the 

process of converting sequences of speech samples to feature 

vectors sequence and the statistical modeling is the speech 

recognition part which can be modeled using Hidden Markov 

Model (HMM) or hybrid of both of Artificial Neural Network. 

Different techniques like Gaussian Mixture Model, K-means 

clustering, Expectation maximization etc. are used for training 

and testing purposes and Viterbi algorithm is used for decoding 

of path sequence. 

The main purpose of signal modeling is to parameterize the 

speech signal. It is desired that the parameterizations are robust 

to noise and variations in channel, device, speaker, session and 

other adverse environments and capture the spectral dynamics of 

speech, or changes of the spectrum with time, which is also 

referred to as the temporal correlation problem. Perceptually-

meaningful parameters along with the delta and double delta 

features are chosen by various researchers.  With the 

introduction of Hidden Markov modeling techniques that are 

capable of statistically modeling the time course, of the signal 

parameters, that incorporate both absolute and differential 

measurements of the signal spectrum have become increasingly 

common. The difference in processing time between various 

signal modeling approaches is now a small percentage of the 

total processing time. The focus today has shifted towards 

maintaining high performance and minimizing the number of 

degrees of freedom. Historically, robustness to background 

acoustic noise has been a major driving force in the design of 

signal models [4-10]. As speech recognition technologies have 

become more and more sophisticated, the recognition system 

itself now contributes more to the noise robustness problem than 

the signal model. But, signal models are still the major activities 

in speech recognition, speaker verification research and speech 

and language related researches.  However, the signal models 

that are good for one type of application may not necessarily be 

optimal for another. Hence, it is often difficult to isolate frond 

end processing of speech signal and system model in the 

development of robust ASR system. In this paper, different 

speech features are briefly reviewed and compared for different 

applications and also feature normalization techniques and 

model adaptation approaches for obtaining over all robustness in 

the system are presented. 

The paper is organized as follow. Section 2 describes brief 

comparisons of different speech features for different speech 

applications, section 3 gives feature normalization techniques, 

section 4 give a brief overview of model adaptation approaches 

towards developing robust speech recognition system and finally 

section 5 gives conclusion of the paper followed by references.  
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2. SPEECH FEATURES AND THEIR 

COMPARISONS 
Several features can be extracted from speech signal and all may 

not be important for a particular type of application.  For 

example, an ideal feature for speaker identification would have 

large speaker variability between speakers but for speech 

recognition speaker variability must be small or minimum. 

Apart from this, feature must be robust against various adverse 

environments, occur frequently and naturally in speech, easy to 

measure from speech signal, difficult to impersonate/mimic, not 

affected by the speaker’s health or long-term variations in voice 

etc. For speech recognition, it is required to consider large 

number of speakers and speech database and apply 

normalization techniques on the speech features to increase 

performance accuracy. Moreover, the number of features should 

also be relatively low to reduce the curse of dimensionality [11] 

and reduce complexity of computation. There are several 

categories of features used in speech processing; and different 

features or combinations of several features are required for 

different type applications. The main categories of speech 

features are temporal features (energy, zero crossing rates, 

power, root mean square of signal, voice onset time (VOT), rise 

time (RT) etc. ), short-term spectral features (Line Spectral 

Frequencies (LSF), Linear Predictive Coefficients (LPC 

Coefficients), Linear Predictive Cepstral Coefficients (LPCC), 

Mel Frequency Cepstral Coefficients (MFCC), Perceptual 

Linear Prediction Coefficients (PLPCC) etc.), voiced source 

features (Fundamental Frequency and related features), spectro-

temporal features(first and second order temporal derivatives of 

features), prosodic features(fundamental frequency (F0), 

syllable stress, intonation patterns, phone duration, speaking 

rate, energy distribution and rhythm ) and high-level features 

[14]. 

In this paper, the major features like Linear Predictive 

Coefficients (LPC), Linear Predictive Cepstral Coefficients 

(LPCC), Mel Frequency Cepstral Coefficients (MFCC), 

Perceptual Linear Prediction Coefficients (PLPCC) RASTA-

PLP cepstral coefficients and their temporal derivatives which 

are most commonly used features in speech recognition research 

are presented. Since the focus is on feature normalization and 

model adaptation techniques, the following sections briefly 

describe these features without giving details of extraction 

techniques and non-parametric method like vector quantization, 

VQ. Fig. 1 shows the broad signal processing method and 

extraction of features. 

The cepstral representation of the speech spectrum provides a 

good representation of the local spectral properties of the signal 

for a given frame. An improved representation is obtained by 

extending the analysis to include information about the temporal 

variation in the speech signal. This is because the temporal 

information is lost in the frame-by-frame analysis. A common 

way to incorporate or recover temporal information to features is 

through time derivatives i.e., first and second-order time 

derivative estimates, known as delta and double-delta 

coefficients, respectively [12, 13] and append these derivatives 

in the original cepstral coefficients. However, there are several 

advantages and disadvantages in using these features for 

different speech applications. Some major advantages and 

disadvantages of these features are briefly reviewed and given in 

Table 1 and Table 2.  

 
 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Signal processing methods for feature extraction. 

The goal of speech recognition research is to increase the 

accuracy and robustness of the ASR systems with respect to 

changes in the environments. Since variations, adverse 

environments and mismatches between training and testing 

conditions lead to a considerable degradation in performance, 

systems must be retrained for every different environment used. 

A system is said to be robust if the recognition accuracy for a 

new environment is the same or higher than that obtained when 

the system is retrained for that environment. Attaining such 

performance is a very difficult task for real time application. 

Different approaches are used by researchers to develop 

environment-independent ASR system. There are two 

approaches used, Feature Domain Approach and Model Based 

Approach, which are presented in the following sections. 

3. FEATURE DOMAIN ADAPTATION 

APPROACHES 
The aim of feature domain techniques is to make speech features 

robust and more consistent under different kinds of noise 

distortions and signal to noise ratios (SNR) by making clean and 

noisy speech features identical to each other while preserving 

the discriminative power of the features. The following section 

briefly describes speech enhancement, feature compensation, 

feature normalization, and temporal filtering techniques to 

obtain such robust speech features. 

3.1 Speech Enhancement 
The objective of human listening is quite different from that of 

automatic speech recognition. For human listening, the objective 

is to improve the quality and intelligibility of speech signals, 

while for ASR the objective is to reduce the difference between 

the clean and noisy speech features. Despite this difference, it is 

reasonable to assume that the good quality and intelligibility of 

speech signal usually leads to small mismatch between clean 

and noisy speech features. The speech enhancement techniques 

were designed for enhancing noise-corrupted speech signals for 

human listening and later these techniques have been modified 

and applied in the feature extraction process of speech 

recognition systems. Popular speech enhancement techniques 

are briefly discussed as follows: 

 

 

 

Signal Processing method 

Linear Processing method Nonlinear Processing method 

Autoregressive models Parametric Non Parametric 

Short time autocorrelation Fourier Spectrum LP Spectrum 

MFCC, PLPCC, RASTA-PLPCC etc. LPC, LPCC etc. VQ 
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Table 1. Comparisons of feature vectors (LP Coefficients, LPCC, MFFCC, PLP, RASTA-PLP and wavelet) 

Features Advantages Disadvantages 

LPC 

& 

LPCC 

LPC is a production based method and it provides good model of 

vocal tract characteristics. It represents the spectral envelope by low 

dimension feature vectors and provides linear characteristics.  

LPC is analytically tractable model. It is mathematically precise and 

straight forward to implement in either software or in hardware.  

 

The LP models the input signal with 

constant weighting for the whole frequency 

range. However, human perception does 

not have constant frequency perception in 

the whole frequency range.  

Another serious problem with the LPC is 

that they are highly correlated but it is 

desirable to obtain less correlated features 

for acoustic modeling. Other inherent 

drawback of conventional  

LPC analysis is its inability to include 

speech specific a priori information in the 

modeling process. 

MFCC 

MFCC is perception based feature. MFCCs are derived from the 

power spectrum of the speech signal, while the phase spectrum is 

ignored. This is done mainly due to our traditional belief that the 

human auditory system is phase deaf, i.e., it ignores phase spectrum 

and uses only magnitude spectrum for speech perception. MFCC 

features are advantageous as it mimics some of the human 

processing of the signal. Characteristics of the slow varying part are 

concentrated in the low cepstral coefficients. Individual features of 

MFCC are weakly correlated which turns out to be an advantage for 

the creation of statistical acoustic model. 

 MFCC features give good discrimination and lend themselves to a 

number of manipulations. It is capable of capturing the phonetically 

important characteristics of speech.  

Also band-limiting can easily be employed to make it suitable for 

telephone applications. It has the basic desirable property that the 

coefficients are largely independent, allowing probability densities to 

be modeled with the diagonal covariance’s metrics. 

Mel scaling has been shown to offer better discrimination between 

phones, which is an obvious help in recognition.  

 

A small drawback is that MFCCs are more 

computationally expensive than LPCC due 

to the Fast Fourier Transform (FFT) at the 

early stages to convert speech from the 

time to the frequency domain. First, they do 

not lie in the frequency domain. Secondly, 

as most current HMMs use Gaussian 

distributions with diagonal covariance 

matrices, these HMMs cannot benefit from 

cepstral weighting. However, it is well-

known that MFCC is not robust enough in 

noisy environments, which suggests that 

the MFCC still has insufficient sound 

representation capability, especially at low 

SNR.  

Though MFCCs have been very successful 

in speech recognition, they have the 

following two problems: (1) They do not 

have any physical interpretation, and (2) 

Liftering of cepstral coefficients, found to 

be highly useful in the earlier dynamic 

warping-based speech recognition systems, 

has no effect in the recognition process 

when used with continuous. The features 

derived from either the power spectrum or 

the phase spectrums have the limitation in 

representation of the signal. 

PLP 

The PLP method takes advantage of three principal characteristics 

derived from the psychoacoustic properties of the human hearing 

viz., spectral resolution of the critical band, equal loudness curve 

adjustment and application of intensity-loudness power law which 

make it more effective than LPCC.  

It approximates the speaker independent effective second formant. It 

emphasizes first two formants F1 and F2 and deemphasizes high 

frequencies in contrast with LP which emphasizes high frequencies, 

F3. It reduces disparity between voiced and unvoiced speech. PLP 

peaks are relatively insensitive to vocal tract length and PLP 

estimates are highly correlated with the relatively speaker 

independent front of the vocal tract. It reduces the sensitivity of ASR 

front ends to changes in high frequencies and increases the 

sensitivity to changes in F2 and F1. 

It is computationally efficient and it yields a low-dimensional 

representation of the speech. It is based on short term spectrum of 

the speech. However, PLP technique is vulnerable when the short 

time spectral values are modified by the frequency response of the 

communication channel.  

Computational requirements of PLP are comparable to their 

conventional LP analysis. The advantage of the PLP technique over 

the conventional LP is that it allows for the effective suppression of 

the speaker-dependent information by choosing the particular model 

One of weak points of PLP analysis is the 

dependency of the result on the overall 

spectral balance on formant amplitudes. 

The spectral balance is easily affected by 

factors such as the recording equipment, 

the communication channel or additive 

noise. The effect of the overall spectral 

balance, to some extent, can be suppressed 

a posterior by a proper distortion measure. 

Just like most other short-term spectrum 

based techniques this method is vulnerable 

when the short-term spectral values are 

modified by the frequency response of the 

communication channel. 
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order. PLP features are advantageous as it also mimics some of the 

human processing of the signal. 

RASTA-

PLP 

In ASR the task is to decode the linguistic message in speech. This 

linguistic message is coded into movements of the vocal tract. The 

speech signal reflects these movements. The rate of change of non-

linguistic components in speech often lies outside the typical rate of 

change of the vocal tract shape.  

The RASTA (relative spectral transform) takes the advantage of this 

task. It suppresses the spectral components which change more 

slowly or quickly than the typical range of change of speech. It 

improves the performance of a recognizer in presence of convolution 

and additive noise. 

It is also used for enhancement of noisy speech. It makes the 

recognizers much more robust to factors like choice of the 

microphone or even to the microphone position relative to the mouth 

that compare to short term spectrum based methods.  

RASTA was developed to make PLP more robust to linear spectral 

distortions. It takes advantage of the fact that the temporal properties 

of environmental effects such as noise, distortions and convolution 

are quite different from the temporal properties of speech.  

The RASTA filter can be used either in the log spectral or cepstral 

domains. In fact the RASTA filter band passes each feature 

coefficient.  

Linear channel distortions appear as an additive constant in both the 

log spectral and the cepstral domains. The high-pass portion of the 

equivalent band pass filter alleviates the effect of convolutional noise 

introduced in the channel. RASTA-PLP is quiet efficient in dealing 

with convolution noise. It is advantageous where the channel 

conditions are not known a priori or where the channel conditions 

may change unpredictably during the use of the recognizer. 

A possible shortcoming of the non 

inclusion of Linear Discriminant Analysis 

(LDA) in RASTA-PLP is that the 

quantization effect took effect before the 

computation of LDA matrices.  

LDA attempts to maximize the linear 

separability between data points belonging 

to different classes in the low-dimensional 

representation of the data. 

 

Wavelet 

Due to the efficient time frequency localization and the multi-

resolution characteristics of the wavelet representations, the wavelet 

transforms are quite suitable for processing non stationary signals 

such as speech.  

In wavelet analysis one can look signals at different scales or 

resolutions: a rough approximation of the signal might look 

stationary, while at detailed level discontinuities become apparent. 

One major advantage afforded by wavelets is the ability to perform 

efficient localization in both time and frequency.  

The multi-resolution property of wavelets that can decompose the 

signal in terms of the resolution of detail makes analysis capable of 

revealing aspects of data that other signal analysis techniques miss 

aspects like transients, breakdown points, discontinuities in higher 

derivatives and self similarity.  

Wavelet analysis can often compress or de-noise a signal without 

appreciable degradation. Wavelets can zoom in to time 

discontinuities and those orthogonal bases, localized in time and 

frequency can be constructed.  

Wavelet transforms have advantages over traditional Fourier 

transforms for representing functions that have discontinuities and 

sharp peaks, and for accurately deconstructing and reconstructing 

finite, non-periodic and/or non-stationary signals.  

Hence, wavelet transform is well suited to transient signals whose 

frequency characteristics are time varying, especially like speech. 

Wavelet method is non-adaptive because 

the same basic wavelets are used for all 

data. 

 

Table 2. Different features, their parameters for different speech applications. 

Types of Recognition Features 

Isolated digit recognition MFCC + Energy + Derivatives 

CSS MFCC + Energy + Derivatives 

IWCSR LP Coefficients, LPCC + Derivatives 

RCSR LPC + Derivatives 

CWR MFCC + Energy + Derivatives 

CSR LPCC + Derivatives 

IWR MFCC + Derivatives 
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RSR isolated and connected MFCC + Energy + Derivatives 

LVCSR MFCC + Energy + Derivatives 

Phoneme Recognition MFCC + Energy + Derivatives 

Isolated noisy Digit recognition MFCC + Energy + Derivatives or RASTA-PLP  

NSR MFCC + Energy + Derivatives + RASTA-PLP 

RSSR in noisy (IWR/CS) MFCC + LPC + Zero Crossing with peak amplitudes or RASTA-PLP  

SSR MFCC + Derivatives 
      Abbreviations used: CSS: Continuous Spontaneous Recognition, IWCSR: Isolated Word continuous Speech Recognition, RCSR: Robust 

Continuous Speech Recognition, CWR: Continuous word Recognition, CSR: Continuous Speech Recognition, IWR: Isolated Word Recognition, RSR: 

Robust Speech Recognition, LVCSR: Large Vocabulary Continuous Speech Recognition, NSR: Noisy Speech Recognition, RSSR: Robust 
Spontaneous Speech Recognition, SSR: Spontaneous Speech Recognition [102]. 

3.1.1 Spectral Subtraction 
Spectral subtraction is a simple but an effective way to reduce 

additive noise's effects in speech signal. Spectral subtraction 

estimates the clean speech spectrum by subtracting the estimated 

additive noise spectrum from the noisy speech spectrum [20, 

22]: 

 222
^

|)(||)(||)(| kNkYkX                          (1) 

where 2
^

|)(| kX   is the estimated clean speech spectrum, |(Y(k)|2 

is the observed noisy speech spectrum, |N(k)|2 is the estimated 

noise spectrum, and k is the frequency bin index. Spectral 

subtraction is motivated by the fact that the noise corruption is 

additive in the power spectrum domain, in expected sense if the 

noise has zero mean in time domain, and is assumed to be 

independent from the speech, i.e. 

E[|Y(k)|2]=E[|X(k)+N(k)|2]=E[|X(k)|2]+E[|N(k)|2]           (2) 

where E[] denotes expected value. The performance of spectral 

subtraction is directly affected by the accuracy of noise 

estimation, which is a very difficult task by itself. In some cases, 

the noise estimate |N(k)|2 is even larger than the noisy speech 

|Y(k)|2, hence the estimated clean spectrum will be negative. 

When this happens, the value of clean spectrum is usually set to 

zero. This simple solution results in non natural spectral vectors 

and causes “musical noise" phenomenon, which is annoying for 

human listening and degrades speech recognition performance. 

There are several kinds of spectral subtraction, and they mainly 

differ in the way to handle the “musical noise". In [23], over 

subtraction and spectral floor are used to provide a tradeoff 

between the “musical noise" and residual noise level. In [24], it 

is proposed to apply the masking properties of ear to determine 

the amount of subtraction. The basic idea is that for those noise 

components that cannot be heard by a human ear, it is not 

subtracted, so there is a smaller amount of subtraction and 

therefore smaller degree of distortion. Despite its application in 

enhancing speech for hearing, spectral subtraction has also been 

used to preprocess noisy speech in the feature extraction process 

of speech recognition systems [25]. The limitation of spectral 

subtraction is that it aims to reduce noise distortion in the signal 

domain and has no direct relationship with the final speech 

recognition task, i.e. to achieve high recognition accuracy. In 

addition, spectral subtraction's performance depends heavily on 

the accuracy of noise estimation which is difficult especially 

when the noise is non-stationary and has similar characteristics 

as speech signal, such as babble noise. 

3.1.2 MMSE Spectral Magnitude Estimator.  
A more advanced speech enhancement technique than spectral 

subtraction is the optimal estimator of speech's short-time 

spectral amplitude (STSA) in the minimum mean square error 

(MMSE) sense [27, 28]. In the MMSE STSA estimator, the 

phase and amplitude of spectral components of clean speech 

signal and noise are assumed to be independent Gaussian 

variables. With this assumption, the distribution of the spectral 

component of noisy speech signal follows the Rayleigh's 

distribution. The MMSE estimate of the clean spectral amplitude 

is then derived based on these models, and the resulting solution 

of the estimator is a function of the a priori SNR and the a 

posteriori SNR of the speech signal. The a priori SNR is the 

expected SNR before the current frame is observed. It is critical 

for the performance of MMSE STSA estimator and can be 

estimated using either Maximum Likelihood estimation or a 

“decision-directed" method. The a posteriori SNR is the 

instantaneous SNR of the current frame. Several methods have 

been proposed to improve the accuracy of the estimate of the a 

priori SNR. Some researchers focused on improving the average 

weighting parameter α of the decision directed method [27, 28], 

which controls the speed of adaptation. Soon and Koh [29] 

proposed to estimate α from the changing speed of frame 

energy. This idea is further extended in [30] by using a 

frequency-dependent MMSE estimator of α. Besides the 

estimation of α, to incorporate more information, Israel [31] 

proposed a non causal a priori SNR estimator that employs both 

past and future frames for better estimation. Another approach 

by Hu and Loizou [32] reduces the variance of the a priori SNR 

estimate indirectly by reducing the variance of noise estimate. 

Another important characteristic of the MMSE STSA estimator 

that incorporates a signal absence probability (SAP) was 

introduced by McAulay and Malpass [21]. With SAP, the 

estimate of a clean speech becomes:  

)())(|()(
^^

kXkYpresentSpeechPkX MMSE                                (3) 

where P(speech present|Y(k)) is the posterior probability of 

speech present at the kth frequency bin when noisy spectral 

coefficient Y(k) is observed, and )(
^

kX MMSE  is the MMSE 

estimation of clean spectral coefficients. Later, the MMSE 

estimator of STSA was extended to log spectral domain [28] to 

simulate the nonlinear compression of the human auditory 

system. The MMSE STSA have been successfully applied to 

noisy speech recognition tasks, e.g. in [33, 34].  

3.1.3 Subspace-based Techniques.  
Another popular speech enhancement technique is the signal 

subspace method, which is motivated by the fact that noisy 

speech signal can usually be decomposed into two subspaces: 

the signal plus noise subspace and the noise only subspace. 

During the enhancement process, the noise only subspace can be 

removed completely and the clean speech signal can be 

estimated from the signal plus noise subspace. There are two 

methods to decompose the noisy signal into the two subspaces, 

namely the singular value decomposition (SVD) method and the 

Karhunen-Loeve transform (KLT). In the SVD-based method 

[35], the clean signal is reconstructed from the singular vectors 

corresponding to the largest singular values. It is believed that 

the singular vectors corresponding to the largest singular values 
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contain speech information, while the singular vectors 

corresponding to the smallest singular values contains noise 

information. This approach provides large SNR gains for speech 

corrupted by white noise. In the Quotient SVD-based approach 

proposed by Jensen et al [36], the previous approach is extended 

to suppress colored noise. However, QSVD is computationally 

expensive. 

Many approaches also use KLT to decompose noisy signal. In 

Ephraim and Van Trees’ method [37], the estimator minimizes 

speech distortion subject to a given residual noise level 

constraint. In this way, a mechanism is provided to adjust the 

tradeoff between the signal distortion and the residual noise 

level. Huang and Zhao [38] extended the method of Ephraim 

and Van Trees by proposing an energy-constrained signal 

subspace method (ECSS). The idea was to match the short-time 

energy of enhanced speech signal to the unbiased estimated of 

the clean speech. They declared that this method recovered the 

low-energy segments in continuous speech effectively. Rezayee 

and Gazor [39] proposed an algorithm to reduce colored noise 

by diagonalizing the noise correlation matrix using the estimated 

Eigen values of the clean speech and nulling any off-diagonal 

elements. Mittal and Phamdo [41] also extended method of 

Ephraim and Van Trees to colored noise by providing proper 

noise shaping for colored noise without pre-whitening. One 

important assumption of signal subspace approach is that the 

largest singular values or Eigen values are from speech and the 

smallest values are from noise. In [40] several subspace-based 

methods have been evaluated on noisy speech recognition task.  

3.2 Feature Compensation 
Speech enhancement techniques try to recover the time domain 

speech signal for human hearing but in feature compensation 

methods the aim is to recover clean speech coefficients from 

noisy speech coefficients during the feature extraction process of 

speech recognition without generating corrected speech signal in 

time domain. There are another two major differences between 

these two groups of methods. One difference is that speech 

enhancement techniques usually operate in time domain, 

frequency domain or log frequency domain, while feature 

compensation methods usually work in the log filter bank 

domain or cepstral domain. Another difference is that feature 

compensation methods are solely designed for noisy speech 

recognition tasks, while speech enhancement methods are 

originally proposed to improve speech signal for human 

listening. Feature compensation methods can be classified into 

two groups based on whether they use the environment model 

described in the following sections: i.e. model-based approach 

and data-driven approach.  

3.2.1 Model-based Feature Compensation  
An early model-based feature compensation technique is the 

code-dependent cepstral normalization (CDCN) [42]. The clean 

cepstral vector x are modeled by a Gaussian mixture model 

(GMM). The CDCN estimates the clean cepstral vectors from 

the noisy observations in the MMSE sense. The closed-form 

solution of the MMSE estimator of x is: 





M

i

iryiphyx
1

^^^

)()|(
                                               (4)    

where
^

x and
^

h are the estimate of the clean cepstral vector and 

channel distortion, respectively. y is the noisy cepstral vector, 

p(i|y) is the posterior probability of the ith mixture in the GMM 

after y is observed, M is the number of mixtures, and )(
^

ir is the 

codeword-dependent correction vectors that need to be 

estimated. In CDCN phase insensitive environment model is 

used. It is to be observed that the GMM of the clean cepstral 

vector x are first adapted to noisy GMM using estimated noise 

and channel distortions and environment model, then p(i|y) for 

all mixtures are calculated.  

The noise and channel distortions are estimated using the ML 

criterion as there is usually no prior information about them 

available. The distortions are assumed to be constant during the 

analysis duration, e.g. an utterance. By assuming speech frames 

to be independent from each other, the log likelihood of the 

training data is: 





T

t

t hnyphnYp
1

),|(log),|(log
                                     (5) 

where Y = y1,…yT is the feature vector sequence of an utterance,  

n is the noise distortion and T is the number of frames in the 

utterance to be processed. In [42], the distribution p(y|n, h) is 

obtained by using the environment model and the distribution of 

x with some assumptions. The optimization is implemented 

using the expectation maximization (EM) algorithm [43]. 

Another model-based feature compensation method is proposed 

by Deng et. al. in [44 - 46]. A major difference between Deng's 

estimator and CDCN is that the phase sensitive environment 

model is used in Deng's estimator for more accurate modeling of 

speech-noise relationship. Besides, Deng's estimator operates in 

the log Mel filterbank domain, while CDCN is a cepstral 

coefficients estimator. Similar to CDCN, there are two major 

parts in Deng's estimator, i.e. the MMSE estimation of the clean 

speech feature vector based on the adopted environment model 

and the prior probability distribution of clean speech, and the 

estimation of noise distortion. The GMM is also used for clean 

feature vector modeling in Deng's estimator. The phase factor is 

also modeled as zero-mean Gaussian distributed. With this prior 

distribution of clean speech, phase, and the phase-sensitive 

environment model, the MMSE estimator of clean feature vector 

can be obtained. However, the estimator is too complex and 

needs to be simplified by using the second-order Taylor series 

expansion. Channel distortion is ignored and sequential noise 

estimation [20] is used to track additive noise. In addition, the 

assumption of stationary noise in CDCN is removed in Deng's 

estimator. It was found by Deng et. al. that the recognition 

performance of the phase-sensitive MMSE estimator [44] was 

better than that of the phase-insensitive MMSE estimator in [48] 

with 54% error rate reduction. This shows that the incorporation 

of the phase information benefits the feature compensation 

process by including relevant information. If the phase factor is 

set to zero, the phase-sensitive MMSE estimator degenerates to 

spectral subtraction. Later, the phase-sensitive MMSE estimator 

is expanded to include the first order derivatives of the speech 

features in the log Mel filterbank domain [45], due to the 

assumption that the strong dynamic property of speech features 

are important for the enhancement of the features. The static and 

dynamic features are assumed to follow a GMM distribution and 

be independent from each other. Then the noisy speech feature 

distribution function is derived and the clean speech features are 

estimated using the MMSE criterion. The work of Deng et. al. 

was further expanded by incorporating a feature compensation 

uncertainty [46] in the decoding process. The feature 

compensation uncertainty accounts for the deviation of the 

enhancement feature from the clean feature, i.e. the variance of 

the feature estimator. To better decode the noisy speech, this 

uncertainty should be taken into account in the decoding 

process. One way to do this is to integrate the acoustic score 
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over this uncertainty space, i.e. over all possible clean feature 

values. One issue for incorporation of the uncertainty is how to 

efficiently calculate the integration. The integration is 

effectively the same as adding the variance of the feature 

estimator (the uncertainty) to the Gaussian's of the HMM states 

if the feature estimation error is assumed to be zero-mean 

Gaussian distribution [46]. Another issue is how to effectively 

estimate the feature estimator's variance. In [19], analytical 

solutions are derived by making use of the phase-sensitive 

environment model. 

3.2.2 Data-driven Feature Compensation  
The simplest data-driven feature compensation is the cepstral 

mean normalization (CMN) [12]. In CMN, the features are 

compensated as: 

ryx tt 
^

                                                                          (6) 

where 
^

tx   and yt are the estimated clean feature vector and 

noisy feature vector for the tth frame respectively, and r is the 

correction term that is the mean of the features, usually obtained 

by averaging the feature vectors over an utterance. The mean of 

features is in fact the optimal estimate of the correction term r in 

the MMSE sense if only a single correction vector is allowed 

[49]. The operation of CMN to compensate all feature vectors 

by a single fixed correction vector is too limiting. The use of a 

single vector r can only compensate for convolutional noise in 

the feature domain. In [50], a method called multivaRiate 

gAussian-based cepsTral normaliZation (RATZ) is proposed to 

use multiple correction vectors. In RATZ, the clean feature 

space is modeled by a GMM. The distribution of the noisy 

speech is also assumed to be GMM. It is observed that in the log 

Mel filterbank and cepstral domain, the effect of noise on the 

distribution of speech signal is that the mean is shifted and the 

variance is either decreased or increased depending on the SNR. 

Therefore, the noisy GMM can be approximated by adding a 

correcting term to the mean and variances of the clean GMM. 

Let the distribution of the cepstral vectors of the clean and noisy 

speech be GMM with the same number of mixtures 
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y , represent mean and variance of vectors. The 

noisy distribution function can be approximated by adding 

correction terms to the clean mean and covariance parameters 
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The correction terms are estimated based on the maximization of 

the likelihood for the noisy observation. As there is no closed-

form solution for the correction terms, the EM algorithm is 

applied again. After the ri and Ri are obtained, the RATZ 

estimates the clean cepstral vector using the MMSE criterion as 

follows: 
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which is a weighted sum of mean correction vectors ri. The 

correction vectors ri and Ri can also be used to adjust the 

parameters of acoustic models for better match between the 

model and noisy data. The estimated noisy mean and variance 

are used to evaluate the posterior of mixtures. For more detail, 

interested reader may refer [51-54]. 

3.3 Feature Normalization 
Unlike speech enhancement and feature compensation methods 

that aim to recover the clean speech coefficients, the feature 

normalization methods normalize the speech coefficients, 

usually cepstral coefficients, to a new space where the noise 

distortion is reduced. It should be mentioned that both the 

compensation and normalization methods modify feature vectors 

and thus the difference between them is not very clear, however, 

feature normalization methods usually modify certain statistics 

of features, e.g. global means and variances, to some reference 

values which are usually obtained from clean speech or simply 

pre-defined values. A rationale of doing so is that the statistics 

of speech features are changed when speech signal is distorted 

by noise. By normalizing the statistics of the speech features, it 

is expected that some systematic distortion caused by noise will 

be reduced. In this section, major feature normalization methods 

are reviewed.  

3.3.1 Cepstral Mean and Variance Normalization  
A simple and effective feature normalization method is the 

cepstral mean normalization (CMN), also called cepstral mean 

subtraction (CMS) [12, 55]. The CMN is already introduced as a 

data-driven feature compensation method in above section. 

However, it can also be treated as a feature normalization 

method. CMN subtracts the features' mean values from the 

features. After subtraction, all the feature dimensions will have a 

zero mean. It is known to be able to reduce the convolutional 

noises, such as microphone mismatch and linear transmission 

channels distortion. This is because convolutional noises 

becomes multiplicative in the frequency domain and additive in 

the log filterbank and cepstral domain. If the convolutional noise 

is fixed, it causes a constant shift in the log filterbank and 

cepstral domain. Therefore, by subtracting the mean from the 

feature for both clean and noisy speech, the convolutional noise 

can be removed in theory. The basic CMN [12, 55] estimates the 

sample mean vector of the cepstral vectors of a sentence and 

then subtract this mean vector from every cepstral vector of the 

sentence. An augmented cepstral normalization method [42] 

estimates the mean vectors for the silence and speech segments 

of the sentence separately and achieved better results. Instead of 

using a hard decision on whether a frame is silence or speech, 

one improvement suggests the use of the a posteriori probability 

of the frame of being silence p(n), which is similar to the speech 

absence probability used in the MMSE STSA. The final mean 

vector is the weighted sum of the silence mean and speech 

mean, with the weights be p(n) and 1-p(n) respectively. In 

another study [56], CMN is also used together with microphone 

array and is called position-dependent CMN. The speaker's 

position is first estimated by the microphone array, and then a 

pre-trained feature mean for the location is used to perform 

CMN. In general, the advantage of CMN is its simplicity, low 

computational cost and easy to be implemented. However, its 

performance is limited as it uses very few items of prior 

information about speech and noise, and the use of a single 

compensation vector provides very little flexibility. Besides 

mean normalization, the cepstral variance normalization (CVN) 

[57] normalizes the variances of features to unity. It is well 

known that noise distortion can change the variance of speech 

features. At different SNR levels, the variance of features may 
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be very different. The CVN is similar to a dynamic gain control. 

It normalizes the total power of feature trajectories to reduce the 

difference among features of different environmental conditions. 

In practice, CMN and CVN is normally used in cascade and 

called the mean and variance normalization (MVN). 

3.3.2 Histogram Normalization 
Histogram Equalization (HEQ) is also used for normalization. 

While CMN and CVN normalize the first and second moments 

of features respectively, histogram equalization [58, 59] 

normalizes the histogram of the features, i.e. the probability 

density function (p.d.f.) of the features. Originally used in image 

processing to automatically balance the contrast of images, HEQ 

is a technique that can change the histogram of any random 

variable to match any other desired histogram. For a random 

variable x with known cumulative distribution function (cdf) Cx, 

we can change its cdf to Cy by performing 

 ))((1 xCCy xy

                                                  (12) 

where y is the transformed version of x. In speech recognition 

systems, HEQ can be applied to normalize the distribution of 

speech features. A reference histogram is first learnt from the 

training data of acoustic model. Then the histogram of the test 

features is normalized towards this reference histogram. The 

process is performed on a dimension-dependent and utterance 

wise basis. Besides histogram of training data, common 

probability distributions can be used, such as Gaussian 

distribution, as the reference. Usually, both the training and 

testing features are processed by HEQ. HEQ can be seen as a 

generalization of CMN and CVN, since when the histogram 

(p.d.f.) of features are normalized, all moments should be 

normalized. From another viewpoint, CMN and CVN provide a 

linear transformation of the features, while HEQ is able to 

transform the features nonlinearly.  

The CMN, CVN/MVN, and HEQ all have two assumptions, i.e. 

the assumption that the noise distortion does not change the 

order statistics of feature trajectories within an utterances or 

segment; and global statistics of an utterance match that of the 

whole training set. The order statistics of a feature trajectory 

refers to which element of the trajectory has the highest value, 

the second highest value, and so on. In fact, noise distortion 

usually breaks this order. Hence, even if we can normalize the 

histogram of the noisy trajectory to the histogram of 

corresponding true clean trajectory, the normalized trajectory 

won't be the same as the clean trajectory. Besides this 

assumption, the assumption about matched statistics is also 

violated in real situations. In training data, we have a balanced 

proportion of all the phonemes. However, during testing, as 

there is very limited number of phonemes in an utterance, the 

phoneme composition of an utterance may be quite different 

from that of the training set. Hence, it is coarse to normalize the 

histogram of just one utterance to the global histogram of the 

entire training set which usually consists of thousands of 

utterances. There is another simple example to demonstrate the 

drawbacks of CMN, CVN, and HEQ [61]. Suppose there is an 

utterance with several words. If several silence frames are 

appended in both the front and end of the utterance, another 

utterance is obtained. Although the acoustic content of these two 

utterances are exactly the same, their normalized versions by 

CMN, CVN/MVN, and HEQ will be different due to the 

different proportions of silence frames in the two utterances. The 

violated assumptions of CMN, CVN, and HEQ are alleviated by 

the use of cluster based normalization techniques. In [60], a 

more general solution is proposed, i.e. the class-based HEQ. In 

this method, the clean training feature vectors are first clustered, 

and then a reference histogram is estimated for each cluster. 

During recognition, the noisy feature vectors are first classified 

into clusters, and then the conventional HEQ is performed for 

each cluster independently. With class-based HEQ, it is possible 

that the order statistics of the normalized feature vectors will be 

different from that of the original vectors. Although this does 

not guarantee that the order statistics of the normalized features 

will be more like the corresponding clean features.  

3.4 Temporal Filtering 
Filtering of feature trajectories is also a popular approach to 

improve the robustness of speech recognition against noise 

corruption. Typically, the filtering is applied to the trajectories 

of log filterbank coefficients or cepstral coefficients, which are 

treated as time domain signals. The filters are usually called 

temporal filters. The most significant difference between 

temporal filters and previous feature domain methods are that 

the temporal filters modify the correlation of features, i.e. 

second order statistics of features or modulation spectrum, while 

previous methods modify the probability distribution of features, 

i.e. first order statistics of features.  

 A common temporal filtering technique is the extraction of 

delta and acceleration features [95]. The delta and acceleration 

(delta-delta) features are generated using the expression 
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where 2M+1 is the number of frames considered in the 

evaluation. The same formula can be applied to the first order 

derivative to produce the second order derivative. The delta 

features are seen as band-pass filtered versions of the static 

features. This can be seen as a finite impulse response (FIR) 

filter. The delta filter is a band-pass filter with the center of 

passband near 15Hz modulation frequency. Delta and 

acceleration features are usually appended to the static features 

and they are shown to improve the performance of speech 

recognition significantly.  The CMN discussed above, can also 

be treated as a temporal filter. Strictly speaking, the magnitude 

response of CMN is time-varying and can only be roughly seen 

as a highpass fillter. CMN eliminates the very low frequency 

components of feature trajectories that could be caused by but 

not limited to channel distortions.  

    The first commonly used temporal filter specifically designed 

to reduce the effect of channel distortion and additive noise is 

the RASTA filter (relative spectra) [96]. The RASTA filter is an 

IIR filter whose transfer function is defined as: 
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where p is a parameter controlling the cut-off frequency of the 

high-pass portion of the filter. Typically, p is set to either 0.98 or 

0.94 [96].. It is a bandpass filter that removes the very low 

frequency and high frequency components of feature 

trajectories. The design agrees with research findings that 

speech modulation frequency of 1-16Hz is most important for 

both human and automatic speech recognition [62-68]. RASTA 

and CMN are both able to reduce channel distortions, and they 

can be used in concatenation to produce better results. 

    Another well-known temporal filter designed to reduce 

feature variation is the autoregressive moving average (ARMA) 

filter used in the MVA processing [97]. The ARMA filter is 

defined as: 
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where x(t) and y(t) are the input and output of the filter, M is the 

order of the filter. The transfer function is: 
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The larger the filter orders M, the lower the cut-off frequency of 

the ARMA filter. The optimal value of M is usually dependent 

on the task. Besides the empirically designed temporal filters 

such as RASTA and ARMA, some researchers also propose to 

use data-driven methods for filter design [69-73]. The filters are 

usually designed from some training data which can be both 

clean and noisy. Typically, discriminative criteria are used to 

guide the filter design, e.g. linear discriminative analysis (LDA) 

and minimum classification error (MCE). Besides, principle 

component analysis has also been used. The filter parameters are 

estimated by optimizing the objective function of these criteria. 

The resulting filters are mostly low-pass or band-pass, similar to 

RASTA and ARMA filters. 

    Most of current temporal filters are fixed after being designed. 

They are not able to track the changes of signal condition during 

speech recognition.  

 

4. MODEL ADAPTATION TECHNIQUES 
In contrast to feature domain methods that aim at making 

features more consistent in various environmental conditions, 

the model adaptation methods adapt acoustic model to make it 

better fit to the noisy acoustic environment. Several model 

adaptation techniques are briefly reviewed and compared in the 

following sub sections. These methods are grouped into data-

driven-based adaptation and environment-model-based 

adaptation based on whether environment model is used or not. 

 

4.1 Data-driven-based Adaptation 
There are several data-driven based adaptations like STAR, 

Stochastic Mapping, MAP and MLLR, and Ensemble modeling. 

They are briefly reviewed in the following sections. 

 

4.1.1 STAR. 
The STAR algorithm of Moreno [50] is closely related to the 

RATZ feature compensation algorithm described in section 3.2. 

Feature compensation methods usually have a model adaptation 

counterpart. The basic concept of STAR is similar to that of 

RATZ. However, unlike RATZ which uses a separate GMM for 

the prior distribution of clean speech, STAR utilizes the HMM. 

STAR estimates the correcting terms, μk and ∑k, for the 256 

Gaussians using the same way as RATZ, and then compensates 

the clean mean and variance vectors to approximate the noisy 

speech distribution [50]. As these Gaussians are shared by all 

HMM models, once they are compensated, all the HMM states 

are adapted. 

 

4.1.2 Stochastic Mapping 
 In stochastic matching, it is assumed that the matched acoustic 

model can be adapted from the clean-trained acoustic model by 

)( xy G  
                                                                 (17) 

where Gη() is the transformation function and η is its parameters. 

In [74], the transformation function is assumed to be: 

bxy                                                                  (18) 
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where μb and ∑b are the correction mean and variance and they 

are estimated for every Gaussian in the acoustic model. In 

RATZ and STAR, the same type of correction vectors is 

assumed to estimate noisy speech distribution from clean 

distribution. The difference is that in stochastic matching, the 

model is HMM rather than GMM. Similar to feature space 

stochastic matching, the correction vectors are estimated by 

maximizing the likelihood of noisy utterance 
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where ˄x is the HMM-based acoustic model trained from clean 

features, Y is the collection of feature vector for an utterance, S 

and C are all possible state sequences and mixture sequences of 

Y. The optimization can be solved by EM algorithm. The 

stochastic matching was improved later by using nonlinear 

mapping function in [75] and by an SNR-incremental stochastic 

matching in [76]. 

 

4.1.3 MAP and MLLR 
Another two model adaptation methods, the maximum 

likelihood linear regression (MLLR) [98] and maximum a 

posteriori (MAP) [77, 78], have been originally designed for 

adapting speaker independent acoustic models to a specific test 

speaker. Due to the similarity between the speaker adaptation 

and environment adaptation, they are also used for noise robust 

speech recognition. The MAP approach adapts the acoustic 

model by optimally using the prior information in the clean 

trained acoustical model and the posterior information in the 

noisy observations. The observations are recognized by speech 

recognition, and only those with high acoustic likelihood score 

are used for adaptation. The Bayesian adaptation framework 

used in the MAP approach enables the optimal use of the noisy 

observations in model adaptation. When the adaptation data are 

few and the posterior information is weak compared to the prior 

HMM acoustical models, the models are not adapted much. As 

there are more and more adaptation data, the models becomes 

asymptotically equivalent to the ML estimate from noisy 

observations, which provides optimal decision rule on the test 

data. However, this adaptation process is quite slow, as only the 

model parameters directly related to the adaptation data are 

adapted. In real applications, the adaptation data are few and 

hence it is necessary to reduce the number of model parameters 

needed to be adapted. To achieve good adaptation performance, 

MLLR [98] uses the parameter sharing strategy, i.e., the similar 

models are tied together and their parameters are adapted 

together. The degree of model tying is high if the available 

amount of adaptation data is low and vice versa. For very few 

data, a global transforms strategy may be used. The basic MLLR 

adapts the mean vectors of the Gaussian by multiplying it with a 

transform matrix, which is obtained using maximum likelihood 

criterion and EM algorithm. The models tied together share the 

same transformation matrix. The advantage of the MLLR is its 

ability to provide good adaptation even if data are few. 

However, MLLR has poor asymptotic properties, which leads to 

the fast saturation of performance gain with increased data. 

Researchers found that the MLLR usually outperforms the MAP 

if the adaptation data are few, but MAP adapts the models better 

when there are a lot of data and the combination of the two 

methods yields better performance. 

 

4.1.4 Ensemble Modeling 
 In practice, there is often very little or no data for supervised 

adaptation. Hence, it is important to reduce the number of free 

parameters that need to be estimated during adaptation. In the 

eigenvoice-based speaker adaptation method [81], the number of 

free parameters is reduced to about 10 such that these 

parameters can be estimated from limited data robustly. The 

ensemble modeling can be seen as a generalization of the 
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eigenvoice approach for the environment-adaptation problem 

[79, 80]. In the ensemble modeling approach, an ensemble of 

acoustic models are trained using speech data of various 

environment conditions, e.g. different noise and SNR 

combinations. After obtaining P acoustic models, the mean 

vectors of Gaussians in each model are concatenated to form a 

supervector and there are totally P supervectors, one supervector 

for one acoustic model. Each supervector has M x D 

dimensions, where M is the number of Gaussian mixtures in an 

acoustic model and D is the feature dimension. The idea is to 

estimate a supervector from these P supervectors based on the 

noisy observations. The estimated supervector can then be used 

to construct an acoustic model for speech recognition. In its 

most general form, the test supervector can be estimated as 

follows: 
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where tests


is the estimated supervector that is supposed to be 

matched with the noisy test data, sp and Ap is the pth supervector 

and transformation matrix, and b is a correction vector. The 

transformation matrices Ap, p = 1,…,P and the correction vector 

b can be estimated using the maximum likelihood criterion and 

the noisy test data. If there is only one model in the ensemble, 

i.e. P = 1, the approach degenerates to MLLR. A problem with 

this general form is that there are too many parameters and it is 

very difficult if not impossible to estimate these parameters 

robustly. A practical form of ensemble modeling approach [79, 

80] is as follows: 
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where wp is a scalar weight rather than a transformation matrix. 

In addition, the correction vector is removed. In this 

formulation, the number of free parameters is P. To further 

reduce complexity, K eigenvectors (K ≤ P) can be obtained by 

PCA and used to replace sp in (22). In this case, there are only K 

free parameters. It is reported in [61] that the ensemble 

modeling approach outperforms MLLR significantly on Aurora-

2 task. Two extensions of ensemble modeling are reported in 

[79]. The first extension is to use a tree-based clustering of the 

environments. During testing, the environment is first estimated, 

and only the supervectors of the selected environments are used 

for adaptation. The second extension is to use minimum 

classification error (MCE) criterion rather than ML [99, 100] to 

obtain discriminative supervectors. 

 

4.2 Environment Model-based Adaptation 
Another group of model adaptation methods uses the 

information of the environment model. A very brief review of 

such two popular methods, the Parallel Model Combination 

(PMC) [82] and Joint Compensation of Additive and 

Convolutive noise (JAC) [83] are given in the following 

sections.  

 

4.2.1 PMC  
Gales and Young [82] proposed the PMC approach, which 

synthesizes a noisy acoustic model using clean acoustic model 

and a noise model. In PMC, the noise is represented by a single 

or multi-state HMM depending on whether the noise is 

stationary. During the adaptation process, the noise model can 

be trained from the frames of silence segments in the testing 

utterances. Both the clean acoustic model and noise model are 

trained from cepstral features; however, the noisy acoustic 

model is synthesized in linear spectral domain, i.e. the filterbank 

domain before natural logarithm and DCT. Therefore, it is 

necessary to convert the mean and variance vectors of the clean 

and noise models back to the linear spectral domain first. After 

the noisy acoustic model is obtained in the linear spectral 

domain, it is then converted to the cepstral domain and used for 

speech recognition. The parameters of the clean acoustic model 

are compensated by adding the parameters of the noise model in 

the linear spectral domain. Specifically, for each clean and noise 

state pair, the mean vectors and covariance matrices of the two 

models are combined using the following formulae 
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,   are the noise model parameters, all in linear 

spectral domain. The gain matching term g is used, as the 

relative strengths of the speech and the noise in the testing 

environment may be different from these training environments, 

and it is estimated as 
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where Es, Ens and En are the average energy of the clean speech, 

noisy speech and background noise respectively. It is reported in 

[82] that PMC significantly improves performance on isolated 

digit recognition task. 

 

4.2.2 JAC 
 JAC [83] is another model adaptation method that uses an 

environment model. Similar to PMC, JAC also transforms the 

acoustic model's parameters back, but to log filterbank domain 

rather than linear spectral domain. Furthermore, JAC deals with 

both additive and convolutive noises, while original PMC only 

compensate for additive noise. In JAC, the phase-insensitive 

environment model is used. JAC first estimates the additive and 

convolutive noises from the current noisy test utterance using an 

EM algorithm. With these noise estimates, JAC adapts acoustic 

model's parameter in the log filterbank domain, and then 

converts the parameters back to cepstral domain. The adapted 

model is used to decode the test utterance, and the output 

alignment information is used to obtain a better estimation of the 

channel distortion, which is used as the initial value for the 

channel distortion for next test utterance. The additive noise 

estimate of current utterance is not similarly used in next test 

utterance as additive noise is assumed to be highly non-

stationary. There are two extensions to JAC [85, 86]. In the first 

extension [85], vector Taylor series (VTS) is used to linearize 

the nonlinear distortion in the environment model. Another 

improvement is that the adaptation is now carried out in the 

cepstral domain directly and there is no need to convert the 

model parameters to log filterbank domain. 

In addition, the extended JAC also adapts the Gaussian 

variances of the acoustic model, which are not adapted in 

original JAC. The second extension [86] is an improvement over 

the first extension. The major improvement is that the phase-

insensitive environment model is replaced by the phase-sensitive 

model for more accurate modeling of the relationship between 

noises and speech. It is reported in [86, 103] that the use of a 

phase-sensitive model significantly improves recognition 

performance on the Aurora-2 task, where the data follows the 

phase-sensitive model well. 
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5. THE HYBRID MODEL 
The speech recognition is a pattern recognition task and 

Artificial Neural Network (ANN) is a good classifier. However, 

Artificial Neural Networks are not very good at handling 

dynamic data and speech signal is dynamic as it varies over time 

as it progresses. Thus, with standard neural networks it is 

difficult to handle this temporal variation in speech signals 

uttered by different speakers or at different speaking rates. 

Therefore, several researchers started combining elements of 

HMMs and neural networks [87 - 91, 101]. Various components 

of the HMM are implemented using neural networks to increase 

the performance of HMM system. In [90] a special recurrent 

neural network called a Viterbi Net was introduced as a way of 

implementing the Viterbi algorithm for an HMM. In [91] a 

similar model called recurrent AlphaNet, was introduced as a 

way of implementing the forward recursions of an HMM. 

Another very interesting neural network implementation of a 

discrete HMM is the so called Boltzmann chain introduced in 

[92]. The Boltzmann chain is a particular variant of Boltzmann 

machine [93], which is very similar to the globally normalized 

discrete HMM [93] that can be trained by a gradient-based 

algorithm which has many similarities to gradient-based 

forward-backward training for globally normalized HMMs.  

   So, rather than simply implementing the HMM alone, most of 

the current researchers also focus on HMM-ANN hybrids, to 

capitalize the strengths of each of the two frameworks: the 

temporal modeling capabilities of the HMM and the static 

classification or function approximation capabilities of Artificial 

Neural Networks. This hybrid model is also a trend towards 

efficient and robust system development in speech recognition 

research. However, it still remains a big challenge for the 

researchers to develop ASR system that gives 100% accurate 

performance in mismatched environments or that matches the 

performance of human counterpart.  

6. CONCLUSION 
In this paper, major speech features used for speech recognition 

and different environment adaptation techniques for 

development for robust speech recognition system are reviewed.  

Integration of two different modeling techniques of HMM and 

Artificial Neural Networks to exploit the temporal modeling 

capabilities of HMM and the static classification capabilities of 

neural networks in order to construct robust speech recognition 

system is also reported. This paper may be useful as a tutorial 

and review on the state-of-the-art speech recognition systems, 

feature normalizations/adaptations, model adaptation etc. for 

students, scholars/researchers and other in the field of speech 

recognition research. It will be helpful for researches and 

development of robust ASR system in adverse environments. 
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