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ABSTRACT 

Much attention has be drawn by the Travelling salesman 

problem lately as it is one of the problem in mathematics and 

computer science which although is easy to understand but 

very difficult to solve.  

 In this paper, a preliminary study is undertaken to construct a 

minimum spanning tree algorithm to approximately solve the 

TSP.  

 An implementation of the travelling salesman problem using 

a modified pure minimum spanning tree algorithm is also 

presented. The propose algorithm provides an evaluation of 

the cost of a round trip and it executes in practical time. The 

algorithm verifies from a constructed tour and presents a 

shortcut path to all destinations. The proposed approach 

performance is benchmark with a case study. 
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1. INTRODUCTION 
The Travelling Salesman Problem normally stated as TSP for 

short, refers with identifying the perfect path that a salesman 

would take while touring between cities. The optimal solution 

to any given TSP would be an inexpensive way to visit a set 

number of cities, tripping each city only once, and then 

returning to the starting city. Due to its vast applications TSP, 

a combinatorial problem, from 1930 where it was first 

formulated, has proven to be one of the most comprehensively 

studied problems in optimization. The much interest into the 

study of TSP is due to its countless applications in 

engineering field which often include scheduling problems 

[2], Vehicle routing [3], constructing phylo-genetic trees [4], 

physical mapping problems [5], and integrated circuit designs 

[6]. From the mentioned applications, extra distance covered 

creates further costs in term of monetary or time. This forms a 

genuine inspiration for mathematicians, engineers and 

academician to suggest new techniques in effectively solving 

TSP. 

 Historically, Sir William Rowan Hamilton and Thomas 

Penyngton Kirkman, developed in the 1800’s the mathematics 

related to the TSP. Presently there is no solution to the TSP 

that has contented mathematicians as TSP solution has eluded 

many mathematicians for years. Although the problem is 

computationally problematical, a great figure of heuristics and 

exact methods are identified, so that a few cases with tens of 

thousands of cities can be worked out. 

Applegate, Bixby, Chvatal, and Cook in 1994, explained TSP 

consisting of 7,397 cities. A little after 4 years, they solved the 

problem with 13,509 cities in United States. W. Li initiated a 

multi-start search method to dynamic travelling salesman 

problem in 2011. His algorithm consists of the relations of 

change and search over time [7]. In year 2001, Applegate, 

Bixby, Chvtal, and Cook identified the optimal tour of 15,112 

Germany cities. 

A great deal of methods have enveloped for solving TSPs. 

over the years methods such as classical algorithms (Tabu-

Search, Simulated Annealing etc), evolutionary algorithms 

(Genetic, memetic etc), natured inspired algorithms (Bee 

Colony optimization, Ant Colony optimization, Firefly 

algorithm etc), and deterministic algorithms among others 

have been suggested. 

This paper begins with a brief discussion on TSP including it 

mathematical formulation in section II; followed by section III 

describing the basic concept of Minimum spanning Tree 

algorithm as well as the optimal solution for TSP. Section IV  

implements and evaluates the algorithm before going into 

section 5 which concludes the paper finding. 

2. TRAVELLING SALESMAN 

PROBLEM 
The Travelling salesman problem represent those problem 

class which is difficult to traditionally solve and even if it is 

possible to solve, computations takes a longer time to 

complete. Much works have gone into discussing and solving 

TSP such as Naive and Dynamic Programming. Both of the 

solutions are infeasible. In fact, there is no polynomial time 

result existing for this problem as the problem is a known NP-

Hard problem. At present the only method known to optimally 

solve the travelling salesman problem of varying size, is by 

detailing each probable tour and probing for the tour with 

smallest amount of cost. But this approach will require a large 

number of time to compute due to permutation complexities 

as the number of tours increases where n is the number of 

cities and the number of tours is n!. Although a method as 

such will result in the optimal solution, is clearly not very 

feasible because of its high time consumption requirement to 

compute all the tours. In place of this approach an 

approximation algorithm can be used. Even though it will 

produce a result that isn’t necessarily the best tour but instead 

a tour that is close to the best tour in relatively less time.  

The TSP can be formulated into mathematical description just 

like a lot other mathematical problems. Countless literatures 

had tried this formulation but among which the easiest to 

appreciate is in [8] where the writers illustrated TSP as 

follows: 

“The TSP can be described on a complete undirected graph 

G=(V,E) if it is symmetric or on a directed graph G=(V,A) if 

it is asymmetric. The set V = {1,…, n} is the vertex set, E = { 

(i, j) : i, j ∈ V, i < j} is an edge set and A = {( i, j) : i, j ∈  V, i 

≠ j} is an arc set. A cost matrix C = (Cij ) is defined on E or on 

A. The cost matrix fulfils the triangle inequality at any time 
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Cij  ≤ Cik  + Ckj  for all i, j, k. In particular, this case planar 

problems for which the vertices are points 𝑃𝑖  = (𝑋𝑖 , 𝑌𝑖) in the 

plane, and 𝐶𝑖𝑗  =  (𝑋𝑖 − 𝑋𝑗 )2 + (𝑌𝑖 − 𝑌𝑗 )2  is the Euclidean 

distance. 

The triangle inequality is also satisfied if 𝐶𝑖𝑗  is the length of a 

shortest path from i to j on G.”  

In complex situation where the Euclidean distance is not used 

to compute the cost (distance)𝐶𝑖𝑗 , the Manhattan distance may 

be employed. 

 The Manhattan distance equation as in (1) 

𝐶𝑖𝑗  = |𝑋𝑖 − 𝑋𝑗 | + |𝑌𝑖 − 𝑌𝑗  |                     

    

𝐶𝑖𝑗  = int[6378.388 acos(0.5 × ((1 + 𝑔1  ) × 𝑔2  )− (1 − 𝑔1  ) 

× 𝑔3  ) + 1]            (2) 

Practically, the cost (distance) is determined using geometric 

distance, explained by  [10] where with a given  city i and city 

j, of longitude (lo) and latitude (la) the cost can be determined 

using (2), where 

𝑔1 = cos( 𝑙𝑜𝑖 − 𝑙𝑜𝑗 ) 

𝑔2 = cos( 𝑙𝑎𝑖 − 𝑙𝑎𝑗) 

𝑔3 = cos( 𝑙𝑎𝑖 − 𝑙𝑎𝑗) 

To convert coordinate input to longitude and latitude in radian 

where 

PI, 𝜋 = 3.141592; 

  deg = int (𝑥[i]);  

  min = x[i]- deg;  

𝑙𝑎𝑖 = 𝜋 ∗
𝑑𝑒𝑔+ 

5∗𝑚𝑖𝑛

3

180
 

  deg = int (𝑦[i]);  

  min = 𝑦[i] - deg;  

𝑙𝑜𝑖 = 𝜋 ∗
𝑑𝑒𝑔+ 

5∗𝑚𝑖𝑛

3

180
 

When the cost function, 𝐶𝑖𝑗   satisfies the triangle inequality, 

an approximate algorithm can be considered for TSP that 

produces a tour whose cost is certainly not more than twice 

the cost of an optimal tour. This paper discusses the Minimum 

Spanning Tree (MST) algorithm to solve Traveling Salesman 

Problem, which is explained in detail in the next section. 

For experimental study, a case study TSPLIB [11] was taken. 

This case study consists of 17-city problem (Groetschel) 

3. MINIMUM SPANNING TREE 

3.1 Basic Concepts 
Much study has gone into the minimum spanning tree (MST) 

to a great extent of this century and yet in spite of its obvious 

simplicity, it is still not entirely understood. The MST is 

simply finding a spanning tree of an undirected, joined graph, 

where each edge has some real number such that the sum of 

the weights of the selected edges is least. The MST has a rich 

and long history which is clearly explained in the works of 

Graham and Hell [12], Maffioli [13] and Pierce [14]. 

Maffioli's assessment takes a greater view and categorizes 

various structures of optimum undirected tree problems, 

placing much prominence on their complexity of computation. 

Graham and Hell concentration was exclusively on the MST; 

not only did they trace their independent sources but also 

survey the algorithms. They gave an outstanding survey of 

end results from the most primitive known algorithm of 

Boruvka to the discovery of Fibonacci heaps, which were 

fundamental to the algorithms in Gabow et al. [15] and 

Fredman and Tarjan [16].  Nevertheless, this revealing studies 

stop in 1985 where classical algorithms were mainly stressed. 

A minimum spanning tree (MST) of a graph with an 

associated weights or costs to each edge is a spanning tree 

whose total of the weights of its edges is no larger than the 

weight of any other spanning tree.  

 

Weighted graph  

 

Tree A: Weight (W) = 91 

 

Tree B: Weight (W) = 79 

 

Tree C: Weight (W) = 80 
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By this, it can be described as a combinatorial optimization 

problem. A general problem definition of the MST by [17]  is 

given an undirected graph G= (V,E), where V indicates 

vertices of set with n = |V| and E edges of set with  m = |E| 

and a real number w(e) for each edge e ∈ E referred to as the 

weight of edge e, the MST problem is defined as finding a 

spanning tree  T* on G, such that w(T*) = minT  w(e)e ∈T  is 

the minimum taken over all possible spanning trees of G. This 

problem can be solved by a lot of different algorithms. Such 

algorithm depending upon the assumptions taken, may be a 

randomized algorithm which can solve in linear expected 

time, linear worst case time or a solution which might be close 

to linear but not entirely linear.  

A lot of direct applications can be linked to MST. This is in 

the areas of wiring connections, computer and communication 

networks, flow network piping, leased-line telephone and 

power networks, as well as transportation network 

connections. MST proffers some form of solution to certain 

problems to which it less applicable directly, such including 

classification problems, clustering and reliability of network. 

MST algorithm can be used in quite a lot of exact and 

approximation algorithms for the capacitated Minimum 

Spanning Tree problem, the matching problem and multi-

terminal flow problem, in this case occurring as a sub-

problem in the solution of other problems.  

3.2 Modeling TSP Using MST Algorithm  
The minimum spanning tree may or may not be unique 

depending on the pair-wise distinction of its weight or cost on 

its edges. 

Given a set number of cities to visit to which every city is 

reachable from every other city somehow forming a tour, then 

a spanning tree of the tour is a connected sub-tour in which 

there are no cycles. The minimum spanning solution will be 

the minimum cost that will be needed to tour all cities at least 

once. 

The travelling salesman problem is finding the least path or 

cost to touring all cities under discussion once and returning 

to the starting city. To adapt the MST algorithm to solve the 

traveling salesman problem, certain assumptions need to be 

met for this model to work. In this article, it is assume for 

expediency that the input graph is complete to guarantee that 

the starting city is adjacent to the last city 

3.2.1 Adopting MST into TSP 

Algorithm 
For a complete graph, G (V, E) 

1. Choose an “anchor” vertex u ∈ V [G].  

2. Let the u be the beginning and finishing point for 

salesman. 

3. Construct a MST of the graph with u as anchor 

STEP 1: Make a set QSet that maintain track of 

vertices already contained in MST. 

STEP 2: Allot a key value to all vertices in the input 

graph. All key values can be initialized as 

ENDLESS. Allot key value as 0 for the anchor, u so 

that it is picked first. 

STEP 3: While QSet does not contain all vertices 

a) Pick a vertex r which is not there in QSet and 

has minimum key value. 

b) Add r to QSet. 

Renew key value of all adjoining vertices of r. Loop 

through al neighboring vertices to renew the key 

values. 

For each adjoining vertex z, if weight of edge r-z is 

less than the previous key value of r, update the key 

value as weight of r-z 

4. Look into the vertex list attained in step 3 and purge 

from it all recurring occurrences of the same vertex  

5. Assume H to be the order of vertices toured in a 

pre-order walk of QSet, connect all unconnected 

nodes. 

6. Present the Hamiltonian cycle T that trips the 

vertices in the order H. 

3.2.2 Pseudo code 
accomplishSet = {0};  // You can use any node... 

   Unreached_Set = {1, 2, ..., N-1}; 

   Spanning_Tree = { }; 

 

   while (UnReached_Set ≠ empty ) 

   { 

     locate edge v = (q, r) such that: 

         1. q ∈ accomplishSet 

  2. r ∈ UnReached_Set 

  3. v has smallest cost 

 

      Spanning_Tree = Spanning_Tree ∪ {v}; 

 

      accomplishSet   = accomplishSet ∪ {r}; 

      UnReached_Set = UnReached_Set - {r}; 

   } 

Scan and remove already listed vertex if any 

Connect all vertex to form a Hamiltonian cycle 

List accomplishedSet in pre-order walk  

 

The next section shows an execution of the suggested 

algorithm 

 

3.2.3 Implementation 
Let us consider a given set of cities. The challenge of the 

problem lies in identifying the shortest path passing from all 

vertices once. Taken R as the starting city 

 

Fig. 1: A set of vertices 
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Fig. 2: A given closed graph with weights 

Construct the MST with R as the root, maintain a set,  

Qset = {}, and A = ∅. Select vertex with the lightest key 

value. Include vertex in Qset. 

 

Fig 3 

Stage 0 

 QSet = { R } 

 Unvisited key Set = {E, F, A, D, R} 

 Lightest edge = {R, E} 

 A = { } 

Update key values of adjoining vertex. Find an edge with 

lightest cost which is not there in QSet that connects a reached 

vertex to an unreached vertex: 

 

Fig 4 

Stage 1  

       QSet = {R, E} 

         Unvisited key Set = {F, A, D, R} 

       Lightest edge = {R, E} 

       A = {{R, E}} 

Renew key value of all adjoining vertices. Loop through all 

neighboring vertices to renew the key values 

until QSet includes all vertices of the given graph. 

For each adjoining vertex z, if weight of edge r-z is less than 

the previous key value of r, update the key value as weight of 

r-z 

 

Fig 5 

Stage 2 

Lightest Edge = (E, F) 

 QSet = {R, E, F} 

 Unvisited key set = {A, D, R} 

 A = {{R, E}, {E, F}} 

 

Fig 6 

Stage 3 

QSet = {R, E, F, A} 

Lightest Edge = (E, A) 

Unvisited keyset = {D, R} 

A = {{R, E}, {E, F}, {E, A}} 
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Fig 7 

Stage 4 

 Lightest Edge = (A, D) 

          QSet = {R, E, F, A, D} 

  Unvisited keyset = {R} 

A = {{R, E}, {E, F}, {E, A},{A, D}} 

 

Fig 8 

Stage 5      
 Lightest Edge = (D, R)  

 QSet = {R, E, F, A, D, R} 

 Unvisited Key set = { } 

 A = {{R, E}, {E, F}, {E, A}, {A, D}, {D, R}} 

Done!! 

All vertices are now connected. 

Purge from A set all recurring occurrences of the same vertex  

A = {{R, E}, {E, F}, {E, A}, {A, D}, {D, R}} 

Flushing out recurring occurrences, we get an equivalent of 

QSet. 

QSet = {R, E, F, A, D, R} 

 

 

Fig 9: Minimum Spanning Tree construction. 

The cost of minimum spanning cost of the tour is 

 (6 + 4 + 5 + 3 + 7) = 25. 

Pre order walk of the vertices is visited as (R, E, F, A, D, R).  

Scan and remove all duplicate vertexes in pre-order walk. Join 

all unconnected vertex to form Hamilton cycle. 

In the case of this example, connect the visited set (R, E, F, A, 

D, R) which form a Hamiltonian cycle and use their cost to 

represent the new tour cost. New cost is (6 + 4 + 8 + 3 + 7) 

=28 

 This illustrates a tour which is returned by the complete 

algorithm.  

From Fig 9, a complete tour can be derived as illustrated in 

Fig 10 which solve the traveling salesman problem  

 

Fig 10: Complete Tour 

In summary,  

 construct the MST  

 remove the edge(s) of all recurring  vertex 

 find an edge with the minimum weight that connects 

 join unconnected edges together to form a Hamilton 

cycle. 

A recommended naive approach to obtain an approximate 

optimal solution to the TSP is formulated as 

mS = (MST * 3)/2    (3) 

Where  

mS = Modified solution 

MST= Minimum Spanning tree cost   



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 5 – No.10, September 2016 – www.caeaccess.org 

 

34 

Table 1: Experimental result of the proposed Algorithm compared with other algorithms and Standard TSPLIB 

TSP Example Optimal 

Result 

(TSPLIB) 

MST B&B GM[20] FA[21] 

Minimum 

cost 

TSP  

solution  

Modified solution 

(ms) 

Best 

results 

Best results Best results 

City6 228 147 260 220.5 228 269 228 

City10 1637 1099 1730 1648.5 1637 1639 1637 

Gr17 2095 1421 2280 2135.5 2090 2187 2095 

 

4. ANALYSIS 
As indicated earlier, the case study is retrieved from a dataset 

directory containing a number of examples of data for the 

travelling salesman problem maintained by Gerhard Reinelt at 

University of Heidelberg hosted website. The website makes 

available numerous challenging problems that relates to TSPs. 

The challenging problem chosen consists of 17 cities in 
Groetschel due to its popularity. The following is the 

information provided by the problem. 

NAME: gr17 

TYPE: TSP 

COMMENT: 17-city problem (Groetschel) 

DIMENSION: 17 

EDGE_WEIGHT_TYPE: EXPLICIT 

EDGE_WEIGHT_FORMAT: LOWER_DIAG_ROW  

EDGE_WEIGHT_SECTION 

 0 633 0 257 390 0 91 661 228 0 412 

227 

 169 383 0 150 488 112 120 267 0 80 

572 196 

 77 351 63 0 134 530 154 105 309 34 

29 0 

 259 555 372 175 338 264 232 249 0 

505 289 262 

 476 196 360 444 402 495 0 353 282 

110 324 61 

 208 292 250 352 154 0 324 638 437 

240 421 329 

 297 314 95 578 435 0 70 567 191 27 

346 83 

 47 68 189 439 287 254 0 211 466 74 

182 243 

 105 150 108 326 336 184 391 145 0 

268 420 53 

 239 199 123 207 165 383 240 140 448 

202 57 0 

 246 745 472 237 528 364 332 349 202 

685 542 157 

 289 426 483 0 121 518 142 84 297 35 

29 36 

 236 390 238 301 55 96 153 336 0  

EOF 

To solve the problem the computation is undertaken using an 

intel(R) Core (TM_i3-3110M CPU@ 2.40GHz laptop 

equipped with 4GB RAM.  

The minimum spanning tree graph is illustrated in fig 11.0 

The result obtained has the path of the tree 0->12->3->12->6-

>7->6->16->7->5->16->13->14->2->10->4->10->9->3->8-

>11->15->4->1. A complete tour from fig 11 which solves the  

 

 

Figure 11.0: Minimum spanning tree path of Groetschel 
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Problem is illustrated in fig 12 and has the path 0->12->3->8- 

>11->15->9->1->4->10->2->14->13->16->5->7->6->0 

following a pre-order walk of the path as indicated by the 

proposed solution if it follows the triangle inequality.  

In order to judge the effectiveness and efficiency of the 

proposed algorithm in solving TSPs, two other TSPLIB 

instances are added to the case study to test the end results 

against ones obtained by other algorithms.  

Table 1 illustrate the algorithm instance City6, City10 and 

Gr17 of the experimental outputs and uses Greedy Method 

(GM), Branch and Bound (B&B), and Firefly Algorithm (FA) 

to perform experimental performance. As can be noted from 

table 1, the algorithm can identify a better path to all cities 

than all other algorithms under discussion in the examples 

listed. Though MST fails to locate the optimal path as 

provided by the standard library, the result gives optimal 

approximation of a complete trip. 

A closer view from Table 1 indicate that the proposed  

algorithm returned a minimum cost of 1421 in Gr17 case 

study, a TSP solution of 2280 and a modified cost of 2131.5, 

36.5 more than 2095 as provided by standard TSPLIB. The 

modified cost was obtained using equation (3) to estimate the 

optimal cost of the proposed algorithm against the standard 

TSPLIB. The TSP solution is algorithm adapted to solve the 

Travelling salesman problem in this paper. 

Compared with B&B, GM and FA, in the case of all TSP 

instances, all can find an optimal path but partially deviating 

from the optimal results (standard TSPLIB) in some cases 

whiles the proposed algorithm minimum cost returns much 

less weight cost than the optimal result .  The TSP solution of 

the MST may perform better than the Greedy method in some 

cases. 

From Table 1, MST provides a tour cost which is never 

greater than the cost of the best travelling salesman tour. The 

modified solution proposed in this paper returned a cost which 

is better than the optimal result in small city problems but 

partially deviated from the optimal results and against other 

algorithms in larger TS problems. The cost of a full walk in 

all instances (in this case) visiting the towns twice will 

provide at most 2 time worse solution than the optimal tour 

and may not represent a solution to the Travel salesman 

problem.  In all instances, FA returned the best results to all 

other algorithms. Results were exact as the standard TSPLIB 

cost. 

 

 

Figure 12: Complete tour of Groetschel 17 

5. CONCLUSION 
Basic Minimum spanning tree approach is applied with some 

modifications in the algorithm to adapt it for Travelling 

Salesman Problem (TSP). The objective is to find the shortest 

distance, construct and estimate the cost for the salesman to 

visit all the cities. Experimental result is obtained and 

compared to the standard case study TSP instances and other 

existing algorithms. 

It shows that the proposed algorithm provides a better 

estimation result which at worse case provides at most twice 

the cost of the proposed algorithm to the best possible 

solution. In larger TS problems the proposed algorithm may 

fail to generate optimal tour but can be used to construct the 

traveling salesman path. 

From the results obtained, it can be concluded that MST 

returns a lower bound on the cost of travelling to all cities.  

In the course of the TSPLIB example, the algorithm indicated 

a high searching speed and accuracy of optimization with a 

superior applied value in solving combinatorial optimization 

and related problems. 

For further studies, the results can be further improved and 

modeled by using christofides algorithm and other local 

search methods integrated with greedy approaches. 

Additionally, the study can be extended with a discrete state 

transition algorithm implementation in problem instances 

much larger than those considered in this study. 
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