

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

29

A Preliminary Study on Minimum Spanning Tree
Algorithm Approach for Travelling Salesman Problem

Evans Baidoo
Kwame Nkrumah

 University of Science and Technology
Department of Computer Science

ABSTRACT

Much attention has be drawn by the Travelling salesman

problem lately as it is one of the problem in mathematics and

computer science which although is easy to understand but

very difficult to solve.

 In this paper, a preliminary study is undertaken to construct a

minimum spanning tree algorithm to approximately solve the

TSP.

 An implementation of the travelling salesman problem using

a modified pure minimum spanning tree algorithm is also

presented. The propose algorithm provides an evaluation of

the cost of a round trip and it executes in practical time. The

algorithm verifies from a constructed tour and presents a

shortcut path to all destinations. The proposed approach

performance is benchmark with a case study.

Keywords

Minimum Spanning Tree, Travelling Salesman Problem

1. INTRODUCTION
The Travelling Salesman Problem normally stated as TSP for

short, refers with identifying the perfect path that a salesman

would take while touring between cities. The optimal solution

to any given TSP would be an inexpensive way to visit a set

number of cities, tripping each city only once, and then

returning to the starting city. Due to its vast applications TSP,

a combinatorial problem, from 1930 where it was first

formulated, has proven to be one of the most comprehensively

studied problems in optimization. The much interest into the

study of TSP is due to its countless applications in

engineering field which often include scheduling problems

[2], Vehicle routing [3], constructing phylo-genetic trees [4],

physical mapping problems [5], and integrated circuit designs

[6]. From the mentioned applications, extra distance covered

creates further costs in term of monetary or time. This forms a

genuine inspiration for mathematicians, engineers and

academician to suggest new techniques in effectively solving

TSP.

 Historically, Sir William Rowan Hamilton and Thomas

Penyngton Kirkman, developed in the 1800’s the mathematics

related to the TSP. Presently there is no solution to the TSP

that has contented mathematicians as TSP solution has eluded

many mathematicians for years. Although the problem is

computationally problematical, a great figure of heuristics and

exact methods are identified, so that a few cases with tens of

thousands of cities can be worked out.

Applegate, Bixby, Chvatal, and Cook in 1994, explained TSP

consisting of 7,397 cities. A little after 4 years, they solved the

problem with 13,509 cities in United States. W. Li initiated a

multi-start search method to dynamic travelling salesman

problem in 2011. His algorithm consists of the relations of

change and search over time [7]. In year 2001, Applegate,

Bixby, Chvtal, and Cook identified the optimal tour of 15,112

Germany cities.

A great deal of methods have enveloped for solving TSPs.

over the years methods such as classical algorithms (Tabu-

Search, Simulated Annealing etc), evolutionary algorithms

(Genetic, memetic etc), natured inspired algorithms (Bee

Colony optimization, Ant Colony optimization, Firefly

algorithm etc), and deterministic algorithms among others

have been suggested.

This paper begins with a brief discussion on TSP including it

mathematical formulation in section II; followed by section III

describing the basic concept of Minimum spanning Tree

algorithm as well as the optimal solution for TSP. Section IV

implements and evaluates the algorithm before going into

section 5 which concludes the paper finding.

2. TRAVELLING SALESMAN

PROBLEM
The Travelling salesman problem represent those problem

class which is difficult to traditionally solve and even if it is

possible to solve, computations takes a longer time to

complete. Much works have gone into discussing and solving

TSP such as Naive and Dynamic Programming. Both of the

solutions are infeasible. In fact, there is no polynomial time

result existing for this problem as the problem is a known NP-

Hard problem. At present the only method known to optimally

solve the travelling salesman problem of varying size, is by

detailing each probable tour and probing for the tour with

smallest amount of cost. But this approach will require a large

number of time to compute due to permutation complexities

as the number of tours increases where n is the number of

cities and the number of tours is n!. Although a method as

such will result in the optimal solution, is clearly not very

feasible because of its high time consumption requirement to

compute all the tours. In place of this approach an

approximation algorithm can be used. Even though it will

produce a result that isn’t necessarily the best tour but instead

a tour that is close to the best tour in relatively less time.

The TSP can be formulated into mathematical description just

like a lot other mathematical problems. Countless literatures

had tried this formulation but among which the easiest to

appreciate is in [8] where the writers illustrated TSP as

follows:

“The TSP can be described on a complete undirected graph

G=(V,E) if it is symmetric or on a directed graph G=(V,A) if

it is asymmetric. The set V = {1,…, n} is the vertex set, E = {

(i, j) : i, j ∈ V, i < j} is an edge set and A = {(i, j) : i, j ∈ V, i

≠ j} is an arc set. A cost matrix C = (Cij) is defined on E or on

A. The cost matrix fulfils the triangle inequality at any time

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

30

Cij ≤ Cik + Ckj for all i, j, k. In particular, this case planar

problems for which the vertices are points 𝑃𝑖 = (𝑋𝑖 , 𝑌𝑖) in the

plane, and 𝐶𝑖𝑗 = (𝑋𝑖 − 𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2 is the Euclidean

distance.

The triangle inequality is also satisfied if 𝐶𝑖𝑗 is the length of a

shortest path from i to j on G.”

In complex situation where the Euclidean distance is not used

to compute the cost (distance)𝐶𝑖𝑗 , the Manhattan distance may

be employed.

 The Manhattan distance equation as in (1)

𝐶𝑖𝑗 = |𝑋𝑖 − 𝑋𝑗 | + |𝑌𝑖 − 𝑌𝑗 | 

 

𝐶𝑖𝑗 = int[6378.388 acos(0.5 × ((1 + 𝑔1) × 𝑔2)− (1 − 𝑔1)

× 𝑔3) + 1] (2)

Practically, the cost (distance) is determined using geometric

distance, explained by [10] where with a given city i and city

j, of longitude (lo) and latitude (la) the cost can be determined

using (2), where

𝑔1 = cos(𝑙𝑜𝑖 − 𝑙𝑜𝑗)

𝑔2 = cos(𝑙𝑎𝑖 − 𝑙𝑎𝑗)

𝑔3 = cos(𝑙𝑎𝑖 − 𝑙𝑎𝑗)

To convert coordinate input to longitude and latitude in radian

where

PI, 𝜋 = 3.141592;

 deg = int (𝑥[i]);

 min = x[i]- deg;

𝑙𝑎𝑖 = 𝜋 ∗
𝑑𝑒𝑔+

5∗𝑚𝑖𝑛

3

180

 deg = int (𝑦[i]);

 min = 𝑦[i] - deg;

𝑙𝑜𝑖 = 𝜋 ∗
𝑑𝑒𝑔+

5∗𝑚𝑖𝑛

3

180

When the cost function, 𝐶𝑖𝑗 satisfies the triangle inequality,

an approximate algorithm can be considered for TSP that

produces a tour whose cost is certainly not more than twice

the cost of an optimal tour. This paper discusses the Minimum

Spanning Tree (MST) algorithm to solve Traveling Salesman

Problem, which is explained in detail in the next section.

For experimental study, a case study TSPLIB [11] was taken.

This case study consists of 17-city problem (Groetschel)

3. MINIMUM SPANNING TREE

3.1 Basic Concepts
Much study has gone into the minimum spanning tree (MST)

to a great extent of this century and yet in spite of its obvious

simplicity, it is still not entirely understood. The MST is

simply finding a spanning tree of an undirected, joined graph,

where each edge has some real number such that the sum of

the weights of the selected edges is least. The MST has a rich

and long history which is clearly explained in the works of

Graham and Hell [12], Maffioli [13] and Pierce [14].

Maffioli's assessment takes a greater view and categorizes

various structures of optimum undirected tree problems,

placing much prominence on their complexity of computation.

Graham and Hell concentration was exclusively on the MST;

not only did they trace their independent sources but also

survey the algorithms. They gave an outstanding survey of

end results from the most primitive known algorithm of

Boruvka to the discovery of Fibonacci heaps, which were

fundamental to the algorithms in Gabow et al. [15] and

Fredman and Tarjan [16]. Nevertheless, this revealing studies

stop in 1985 where classical algorithms were mainly stressed.

A minimum spanning tree (MST) of a graph with an

associated weights or costs to each edge is a spanning tree

whose total of the weights of its edges is no larger than the

weight of any other spanning tree.

Weighted graph

Tree A: Weight (W) = 91

Tree B: Weight (W) = 79

Tree C: Weight (W) = 80

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

31

By this, it can be described as a combinatorial optimization

problem. A general problem definition of the MST by [17] is

given an undirected graph G= (V,E), where V indicates

vertices of set with n = |V| and E edges of set with m = |E|

and a real number w(e) for each edge e ∈ E referred to as the

weight of edge e, the MST problem is defined as finding a

spanning tree T* on G, such that w(T*) = minT w(e)e ∈T is

the minimum taken over all possible spanning trees of G. This

problem can be solved by a lot of different algorithms. Such

algorithm depending upon the assumptions taken, may be a

randomized algorithm which can solve in linear expected

time, linear worst case time or a solution which might be close

to linear but not entirely linear.

A lot of direct applications can be linked to MST. This is in

the areas of wiring connections, computer and communication

networks, flow network piping, leased-line telephone and

power networks, as well as transportation network

connections. MST proffers some form of solution to certain

problems to which it less applicable directly, such including

classification problems, clustering and reliability of network.

MST algorithm can be used in quite a lot of exact and

approximation algorithms for the capacitated Minimum

Spanning Tree problem, the matching problem and multi-

terminal flow problem, in this case occurring as a sub-

problem in the solution of other problems.

3.2 Modeling TSP Using MST Algorithm
The minimum spanning tree may or may not be unique

depending on the pair-wise distinction of its weight or cost on

its edges.

Given a set number of cities to visit to which every city is

reachable from every other city somehow forming a tour, then

a spanning tree of the tour is a connected sub-tour in which

there are no cycles. The minimum spanning solution will be

the minimum cost that will be needed to tour all cities at least

once.

The travelling salesman problem is finding the least path or

cost to touring all cities under discussion once and returning

to the starting city. To adapt the MST algorithm to solve the

traveling salesman problem, certain assumptions need to be

met for this model to work. In this article, it is assume for

expediency that the input graph is complete to guarantee that

the starting city is adjacent to the last city

3.2.1 Adopting MST into TSP

Algorithm
For a complete graph, G (V, E)

1. Choose an “anchor” vertex u ∈ V [G].

2. Let the u be the beginning and finishing point for

salesman.

3. Construct a MST of the graph with u as anchor

STEP 1: Make a set QSet that maintain track of

vertices already contained in MST.

STEP 2: Allot a key value to all vertices in the input

graph. All key values can be initialized as

ENDLESS. Allot key value as 0 for the anchor, u so

that it is picked first.

STEP 3: While QSet does not contain all vertices

a) Pick a vertex r which is not there in QSet and

has minimum key value.

b) Add r to QSet.

Renew key value of all adjoining vertices of r. Loop

through al neighboring vertices to renew the key

values.

For each adjoining vertex z, if weight of edge r-z is

less than the previous key value of r, update the key

value as weight of r-z

4. Look into the vertex list attained in step 3 and purge

from it all recurring occurrences of the same vertex

5. Assume H to be the order of vertices toured in a

pre-order walk of QSet, connect all unconnected

nodes.

6. Present the Hamiltonian cycle T that trips the

vertices in the order H.

3.2.2 Pseudo code
accomplishSet = {0}; // You can use any node...

 Unreached_Set = {1, 2, ..., N-1};

 Spanning_Tree = { };

 while (UnReached_Set ≠ empty)

 {

 locate edge v = (q, r) such that:

 1. q ∈ accomplishSet

 2. r ∈ UnReached_Set

 3. v has smallest cost

 Spanning_Tree = Spanning_Tree ∪ {v};

 accomplishSet = accomplishSet ∪ {r};

 UnReached_Set = UnReached_Set - {r};

 }

Scan and remove already listed vertex if any

Connect all vertex to form a Hamiltonian cycle

List accomplishedSet in pre-order walk

The next section shows an execution of the suggested

algorithm

3.2.3 Implementation
Let us consider a given set of cities. The challenge of the

problem lies in identifying the shortest path passing from all

vertices once. Taken R as the starting city

Fig. 1: A set of vertices

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

32

Fig. 2: A given closed graph with weights

Construct the MST with R as the root, maintain a set,

Qset = {}, and A = ∅. Select vertex with the lightest key

value. Include vertex in Qset.

Fig 3

Stage 0

 QSet = { R }

 Unvisited key Set = {E, F, A, D, R}

 Lightest edge = {R, E}

 A = { }

Update key values of adjoining vertex. Find an edge with

lightest cost which is not there in QSet that connects a reached

vertex to an unreached vertex:

Fig 4

Stage 1

 QSet = {R, E}

 Unvisited key Set = {F, A, D, R}

 Lightest edge = {R, E}

 A = {{R, E}}

Renew key value of all adjoining vertices. Loop through all

neighboring vertices to renew the key values

until QSet includes all vertices of the given graph.

For each adjoining vertex z, if weight of edge r-z is less than

the previous key value of r, update the key value as weight of

r-z

Fig 5

Stage 2

Lightest Edge = (E, F)

 QSet = {R, E, F}

 Unvisited key set = {A, D, R}

 A = {{R, E}, {E, F}}

Fig 6

Stage 3

QSet = {R, E, F, A}

Lightest Edge = (E, A)

Unvisited keyset = {D, R}

A = {{R, E}, {E, F}, {E, A}}

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

33

Fig 7

Stage 4

 Lightest Edge = (A, D)

 QSet = {R, E, F, A, D}

 Unvisited keyset = {R}

A = {{R, E}, {E, F}, {E, A},{A, D}}

Fig 8

Stage 5
 Lightest Edge = (D, R)

 QSet = {R, E, F, A, D, R}

 Unvisited Key set = { }

 A = {{R, E}, {E, F}, {E, A}, {A, D}, {D, R}}

Done!!

All vertices are now connected.

Purge from A set all recurring occurrences of the same vertex

A = {{R, E}, {E, F}, {E, A}, {A, D}, {D, R}}

Flushing out recurring occurrences, we get an equivalent of

QSet.

QSet = {R, E, F, A, D, R}

Fig 9: Minimum Spanning Tree construction.

The cost of minimum spanning cost of the tour is

 (6 + 4 + 5 + 3 + 7) = 25.

Pre order walk of the vertices is visited as (R, E, F, A, D, R).

Scan and remove all duplicate vertexes in pre-order walk. Join

all unconnected vertex to form Hamilton cycle.

In the case of this example, connect the visited set (R, E, F, A,

D, R) which form a Hamiltonian cycle and use their cost to

represent the new tour cost. New cost is (6 + 4 + 8 + 3 + 7)

=28

 This illustrates a tour which is returned by the complete

algorithm.

From Fig 9, a complete tour can be derived as illustrated in

Fig 10 which solve the traveling salesman problem

Fig 10: Complete Tour

In summary,

 construct the MST

 remove the edge(s) of all recurring vertex

 find an edge with the minimum weight that connects

 join unconnected edges together to form a Hamilton

cycle.

A recommended naive approach to obtain an approximate

optimal solution to the TSP is formulated as

mS = (MST * 3)/2 (3)

Where

mS = Modified solution

MST= Minimum Spanning tree cost

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

34

Table 1: Experimental result of the proposed Algorithm compared with other algorithms and Standard TSPLIB

TSP Example Optimal

Result

(TSPLIB)

MST B&B GM[20] FA[21]

Minimum

cost

TSP

solution

Modified solution

(ms)

Best

results

Best results Best results

City6 228 147 260 220.5 228 269 228

City10 1637 1099 1730 1648.5 1637 1639 1637

Gr17 2095 1421 2280 2135.5 2090 2187 2095

4. ANALYSIS
As indicated earlier, the case study is retrieved from a dataset

directory containing a number of examples of data for the

travelling salesman problem maintained by Gerhard Reinelt at

University of Heidelberg hosted website. The website makes

available numerous challenging problems that relates to TSPs.

The challenging problem chosen consists of 17 cities in
Groetschel due to its popularity. The following is the

information provided by the problem.

NAME: gr17

TYPE: TSP

COMMENT: 17-city problem (Groetschel)

DIMENSION: 17

EDGE_WEIGHT_TYPE: EXPLICIT

EDGE_WEIGHT_FORMAT: LOWER_DIAG_ROW

EDGE_WEIGHT_SECTION

 0 633 0 257 390 0 91 661 228 0 412

227

 169 383 0 150 488 112 120 267 0 80

572 196

 77 351 63 0 134 530 154 105 309 34

29 0

 259 555 372 175 338 264 232 249 0

505 289 262

 476 196 360 444 402 495 0 353 282

110 324 61

 208 292 250 352 154 0 324 638 437

240 421 329

 297 314 95 578 435 0 70 567 191 27

346 83

 47 68 189 439 287 254 0 211 466 74

182 243

 105 150 108 326 336 184 391 145 0

268 420 53

 239 199 123 207 165 383 240 140 448

202 57 0

 246 745 472 237 528 364 332 349 202

685 542 157

 289 426 483 0 121 518 142 84 297 35

29 36

 236 390 238 301 55 96 153 336 0

EOF

To solve the problem the computation is undertaken using an

intel(R) Core (TM_i3-3110M CPU@ 2.40GHz laptop

equipped with 4GB RAM.

The minimum spanning tree graph is illustrated in fig 11.0

The result obtained has the path of the tree 0->12->3->12->6-

>7->6->16->7->5->16->13->14->2->10->4->10->9->3->8-

>11->15->4->1. A complete tour from fig 11 which solves the

Figure 11.0: Minimum spanning tree path of Groetschel

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

35

Problem is illustrated in fig 12 and has the path 0->12->3->8-

>11->15->9->1->4->10->2->14->13->16->5->7->6->0

following a pre-order walk of the path as indicated by the

proposed solution if it follows the triangle inequality.

In order to judge the effectiveness and efficiency of the

proposed algorithm in solving TSPs, two other TSPLIB

instances are added to the case study to test the end results

against ones obtained by other algorithms.

Table 1 illustrate the algorithm instance City6, City10 and

Gr17 of the experimental outputs and uses Greedy Method

(GM), Branch and Bound (B&B), and Firefly Algorithm (FA)

to perform experimental performance. As can be noted from

table 1, the algorithm can identify a better path to all cities

than all other algorithms under discussion in the examples

listed. Though MST fails to locate the optimal path as

provided by the standard library, the result gives optimal

approximation of a complete trip.

A closer view from Table 1 indicate that the proposed

algorithm returned a minimum cost of 1421 in Gr17 case

study, a TSP solution of 2280 and a modified cost of 2131.5,

36.5 more than 2095 as provided by standard TSPLIB. The

modified cost was obtained using equation (3) to estimate the

optimal cost of the proposed algorithm against the standard

TSPLIB. The TSP solution is algorithm adapted to solve the

Travelling salesman problem in this paper.

Compared with B&B, GM and FA, in the case of all TSP

instances, all can find an optimal path but partially deviating

from the optimal results (standard TSPLIB) in some cases

whiles the proposed algorithm minimum cost returns much

less weight cost than the optimal result . The TSP solution of

the MST may perform better than the Greedy method in some

cases.

From Table 1, MST provides a tour cost which is never

greater than the cost of the best travelling salesman tour. The

modified solution proposed in this paper returned a cost which

is better than the optimal result in small city problems but

partially deviated from the optimal results and against other

algorithms in larger TS problems. The cost of a full walk in

all instances (in this case) visiting the towns twice will

provide at most 2 time worse solution than the optimal tour

and may not represent a solution to the Travel salesman

problem. In all instances, FA returned the best results to all

other algorithms. Results were exact as the standard TSPLIB

cost.

Figure 12: Complete tour of Groetschel 17

5. CONCLUSION
Basic Minimum spanning tree approach is applied with some

modifications in the algorithm to adapt it for Travelling

Salesman Problem (TSP). The objective is to find the shortest

distance, construct and estimate the cost for the salesman to

visit all the cities. Experimental result is obtained and

compared to the standard case study TSP instances and other

existing algorithms.

It shows that the proposed algorithm provides a better

estimation result which at worse case provides at most twice

the cost of the proposed algorithm to the best possible

solution. In larger TS problems the proposed algorithm may

fail to generate optimal tour but can be used to construct the

traveling salesman path.

From the results obtained, it can be concluded that MST

returns a lower bound on the cost of travelling to all cities.

In the course of the TSPLIB example, the algorithm indicated

a high searching speed and accuracy of optimization with a

superior applied value in solving combinatorial optimization

and related problems.

For further studies, the results can be further improved and

modeled by using christofides algorithm and other local

search methods integrated with greedy approaches.

Additionally, the study can be extended with a discrete state

transition algorithm implementation in problem instances

much larger than those considered in this study.

6. ACKNOWLEDGMENTS
Special appreciation goes to Mr. Bismark Boakye Yiadom,

Mr. Derrick Lamptey and Mr. Stephen Oppong for their

immense support and co-operation. The work was also
supported by Mr. Dominic Asamoah, Kwame Nkrumah

University of Science and Technology.

7. REFERENCES
[1] http://en.wikipedia.org/wiki/Travelling salesman

problem.

[2] Whitely, D., Starkweather, T. and D’Ann, F. 1989.

Scheduling problems and traveling salesman: The

genetic edge recombination operator, in Proc.3rd Int.

Conf. Genetic Algorithms, 1989, pp.133–140.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.10, September 2016 – www.caeaccess.org

36

[3] Clarke, G. and Wright, J.W. 1964. Scheduling of

vehicles from a central depot to a number of delivery

points, Oper. Res., vol. 12, pp. 568–581, 1964.G.

http://dx.doi.org/10.1287/opre.12.4.568

[4] Korostensky, C. and Gonnet, G. H. 2000. Using traveling

salesman problem algorithms for evolutionary tree

construction, Bioinformatics, vol. 16, no. 7, pp. 619–

627, 2000.

http://dx.doi.org/10.1093/bioinformatics/16.7.61

[5] Alizadeh, F., Karp, R. M., Newberg, L. A. and Weisser

D. K., 1993. Physical mapping of chromosomes: A

combinatorial problem in molecular biology, in Proc. 4th

ACM-SIAM Symp. Discrete Algorithms (SODA), 1993,

pp. 52–76.

[6] Kirkpatrick, S., Gelatt Jr, C. D. and Vecchi, M. P. 1983.

Optimization by simulated annealing, Science, vol. 220,

pp. 498–516, 1983.

http://dx.doi.org/10.1126/science.220.4598.671

[7] Li, W.2011. A Parallel Multi-Start Search Algorithm for

Dynamic Traveling Salesman Problem. 10th

International Conference on Experimental Algorithm, pp

65-75, 2011.

[8] R. Matai, S. Singh, M. L. Mittal,“Traveling Salesman

Problem: an Overview of Applications, Formulations,

and Solution Approaches,”Traveling Salesman Problem,

Theory and Applications. InTech, 2010.

[9] http://www.geeksforgeeks.org/greedy-algorithms-set-5-

prims-minimum-spanning-tree-mst-2/

[10] Hendtlass, T. 2010. TSP Optimisation Using Multi Tours

Ants, 17th International Conference on Industrial and

Engineering Applications of Artificial Intelligence and

Expert Systems, pp. 523-532, 2010.

[11] https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html

[12] Graham, R. L., and Hell, P. 1985. On the history of the

minimum spanning tree problem. Annals of the History

of Computing 1985;7:43}57.

[13] Maffioli, F. 1981. Complexity of optimum undirected

tree problems: a survey of recent results. In: Ausiello G,

Lucertini M, editors. Analysis and design of algorithms

in combinatorial optimization. International Center for

Mechanical Sciences. CISM Courses and Lectures, 266.

New York: Springer, 1981. p. 107}28.

[14] Pierce, A. R. 1974. Bibliography on algorithms for

shortest path, shortest spanning tree and related circuit

routing problems (1956}1974). Networks1975;5:129}49.

[15] Fredman, M. L., and Tarjan, R. E. 1987. Fibonacci heaps

and their uses in improved network

optimizationalgorithms. J. ACM 34, 596–615.

[16] Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E.

1986. Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs.

Combinatorica 6, 109–122.

[17] Cuneyt F. B. and Khalil S. H. 2001. Minimum-weight

spanning tree algorithms. A survey and empirical study,

Computer & Operations Research 28(2001) 767-785

[18] http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%

2028%20-%20Approximation%20Algorithm.htm

[19] Cook, W. 2009. History of the TSP." The Traveling

Salesman Problem. Oct 2009. Georgia Tech, 22 Jan

2010. <http://www.tsp.gatech.edu/index.html>.

[20] Lawler, E. L, Lenstra, J. K., Rinnooy Kan, A.H.G

and.Shmoys, D.B 1985. The Traveling Salesman

Problem. John Wiley & Sons.

[21] Sharad, N. et al. 2013. Solving Travelling Salesman

Problem using Firefly Algorithm. International Journal

for Research in Science & Advanced Technologies

Issue-2, Volume-2, 053-057

http://dx.doi.org/10.1093/bioinformatics/16.7.61
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%2028%20-%20Approximation%20Algorithm.htm
http://www.csl.mtu.edu/cs4321/www/Lectures/Lecture%2028%20-%20Approximation%20Algorithm.htm

