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ABSTRACT 
Constraints satisfaction problems (CSPs) aim at solution via 

algorithms that search a domain space for goal states. The 

solution of which must satisfy all constraints and guarantees 

explicit reasoning structure that conveys data about the 

problem to the algorithm. Thus, it assigns to an output, a set 

of variables that satisfies a set of constraints in its bid to 

prune off huge portion of the search space. This study 

presents solutions to quadratic functions via David Fletcher 

Powell method and stochastic method of optimization. To 

aim this purpose, hybrid neural networks are trained using 

DFP as a pre-processor to yield approximate solutions to the 

quadratic function. A trial solution of the quadratic equation 

is written as sum of two parts: (a) first part satisfies the initial 

condition for unconstrained optimization using DFP and 

hybrids as separate methods to solve a quadratic function; 

while (b) second part uses DFP as a pre-processor with 

adjustable parameters of for the ANN-TLRN hybrid. Results 

show that presented method introduces a closer form to the 

analytic solution. These present method is easily extended to 

solve a wide range of problems. 

Keywords 
Stochastic, elitist, network, function, optimization, search space, 

solution 

1. INTRODUCTION 
Search methods aim to maximize or minimize constraint 

satisfaction problem objective functions and yield a feasible, 

optimal (closest to best) solution. CSPs are dynamic, 

nonlinear and complex – making the search for its solution 

cumbersome and inexplicable to resolve. Thus, search 

methods must be tuned to resolve CSP optimization as it 

relates inputs with uncontrollable parameter in the modeled 

system to satisfy all possible constraints to yield an output 

that is both flexible, optimal, easily adapted and robust 

(Ojugo, 2013a). 

Nonlinear systems modeled via mathematical equations, 

appear in diverse spheres of life as dynamic feats and 

phenomena in control systems, medicine, communication 

etc. Such systems are modeled as quadratic functions and 

various methods are used to solve quadratic/differential 

equations. Finding the optimal solution of nonlinear, 

quadratic equations is still a challenge task (Fletcher and 

Reeves, 1964; Forsythe, 1986 and Friedlander et al, 1999). 

Many studies have shown that parallel processor computers 

in order to solve the first order differential equation using 

Hopfield neural network models as a factor of speed; while 

some, used feedforward ANN to solve linear/nonlinear 

ordinary differential equations (Ghalambaz et al, 2011); 

while Lagaris et al (1998) went further to represent a new 

method to solve first-order linear ordinary and partial 

equations using ANN, as was further buttressed by Malek 

and Shekari (2006). Khan et al (2009) provided a hybrid 

ANNPSO intelligence model to solve the well-known 

Wessinger equation (though the model could not satisfy 

initial and boundary conditions). It was improved by 

Ghalambaz et al (2011); while Khan et al (2009) furthered to 

satisfy the solution for initial and boundary condition 

problems. The study presents comparative stochastic model 

for solving quadratic equation using DFP as preprocessor to 

seek optimality and convergence property. The paper is has: 

Section 1 as detailed description of optimization, Section 2 

as problem formulation, Section 3 is brief review of adopted 

stochastic frameworks, Section 4 discusses results. And 

finally, conclusions and directions of future research. 

1.1. Mathematical Optimization 
Mathematical optimization is a selection of the best element 

from a set of available alternatives. It thus, aims either at a 

maximization or minimization task of real function that 

symmetrically choose inputs from an allowed set of 

variables, to compute the function’s output by finding the 

best available values from a set of alternatives via the 

objective function in a given domain (Ojugo, 2012b). Armijo 

(1966) and Ojugo (2012a) notes that: 

Definition 1: A continuous optimization defined as a pair (S, 

f). S is set of possible solutions: S = RN and N is number of 

controllable parameters and R is the real number line. Thus, f 

is a multi-objective function (f: S  R) to be optimized – 

where a solution vector X is as limited between lower and 

upper bounds (Xlb≤X≤Xub). For maximization task (search 

for a solution greater than or equal to all other solutions), and 

minimization task (search for solution that is smaller than or 

equal to the all other solutions).The set of maximal and 

minimal solution Smax  S of a function f: S  R defined as: 

Xmax  Smax   X  S: f(Xmax)  f(X)    (1) 

Xmin  Smin   X  S: f(Xmin)  f(X)    (2) 

2. DFP: THE PROBLEM 

FORMULATION 
We aim to minimize  

𝒇 𝒙𝟏𝒙𝟐 = (𝒙𝟐 − 𝒙𝟏)𝟐 +  (𝟏 − 𝒙𝟏)𝟐 𝒘𝒊𝒕𝒉 𝒙𝟏 =  
𝟎
𝟎
  and 

𝒇 𝒙𝟏𝒙𝟐 = 𝒙𝟏
𝟐 + 𝟐𝟓𝒙𝟐

𝟐, 𝒙𝟏 =  
𝟐
𝟐
  𝒂𝒔 𝒔𝒕𝒂𝒓𝒕 𝒑𝒐𝒊𝒏𝒕𝒔  
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Dai (2001) notes that a point x* ɛ A is a global minimum of 

fo(x) if: 𝒇 𝒙𝟎 ≤ 𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ɛ 𝑨    𝟑 . An ideal 

optimization allows its objective function to have a unique 

minimize. Thus, the function in Eq. 3 is a global minimizer. 

Conversely, a point x* ɛ A is a local minimize if for any ɛ > 

0, f(x*) ≤ f(x) and for any x ɛ A, ||x – x*|| ≤ ɛ 

2.1 Line Search Method / Algorithm 
Dai et al (2002) and Polyak (1969) notes that numeric 

method algorithm for unconstrained optimization (as 

grouped into line search and trust region) aims to minimize 

the nonlinear function f(x) as in Eq. 4. Thus, an iterative, 

continuous f(x) with initial point x1, its kth iteration (new 

point xk+1) is computed as thus (Barzilar, 1988 and Raydan, 

2003):  

Y = 𝐌𝐢𝐧𝒙 𝜺 𝑹𝑵 𝒇 𝒙       (𝟒) 

The goal of convergence analysis is to study feats of 

sequence {xk} generated and compare the differences 

between the convergence performances of the various 

models (Batruni, 1991; Powell, 1971 and 1976). The 

sequence xk generated is said to converge to a point x* if: 

𝒀 =  𝐋𝐢𝐦
𝒌→∞

  𝒙𝒌 − 𝒙∗  = 𝟎      (𝟓) 

With the solution for x* as in Eq. 5 not available, a possible 

replacement is Eq. 6, which unfortunately, also does not 

guarantee the convergence of xk will then yield Eq. 6 as 

given by Daniel (1967) and Gottlieb and Orszag (1977) as 

thus: 

𝒀 =  𝐋𝐢𝐦
𝒌→∞

  𝒙𝒌 − 𝒙𝒌−𝟏  = 𝟎      (𝟔) 

However, the global convergence for unconstrained 

optimization aims to prove that Eq. 7 ensures xk is close to 

the set of stationery points where (x) = 0, or Eq. 8, which 

ensures that a least subsequence of xk is close to the set of the 

stationery points (Dai and Yuan 1999; 2003). 

𝐋𝐢𝐦
𝒌→∞

  𝒈𝒌  = 𝟎      (𝟕) 

𝐋𝐢𝐦 𝑰𝒏𝑭
𝒌→∞

  𝒈𝒌  = 𝟎    (𝟖) 

But 𝒈𝒌 = 𝒈 𝒙𝒌 = 𝛁𝒇 𝒙𝒌 . Local convergence aims at the 

convergence speed of the sequence generated by the 

algorithm. In studying this, we assume a sequence xk 

converges to a local minimize x*, so that the second order 

sufficient condition and the Newton method, can converge 

very slowly (Polak, 1969 and Polyak, 1969). 

2.2 Quasi-Newton Method 
Dennis and Moore (1974) note Newton’s method as the basis 

for Quasi-Newton, and most widely used for solving 

nonlinear equations and unconstrained optimization. If for a 

smooth function f(x) and a positive hessian, then Second 

order Taylor’s expansion yields thus: 

𝒇 𝒙 + 𝒑 ≅ 𝒇 𝒙 + 𝒑𝑻𝒇 𝒙 +
𝟏

𝟐
𝒑𝑻𝒇 𝒙  

𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕𝒊𝒂𝒕𝒊𝒏𝒈 𝒚𝒊𝒆𝒍𝒅𝒔 
𝝏𝒇(𝒙 + 𝒑)

𝝏𝒑
 ≅  𝛁𝒇 𝒙 + 𝛁𝟐

𝒇 𝒙 

=  𝟎 

𝑻𝒉𝒖𝒔, 𝛁𝟐
𝒇 𝒙 = −𝒇 𝒙     (9) 

As long as 2
f(x) is a positive definite, 2

f(x)p is Newton 

direction, and the next approximation is: 

𝒙𝒌+𝟏 =  𝒙𝒌 − 
𝛁𝒇(𝒙)

𝛁𝟐
𝒇(𝒙)

   (𝟏𝟎)  

Newton direction has proven to be more expensive than 

Steepest Descent direction. We must compute the hessian 

matrix and invert it (not applicable with Quasi Newton). Its 

merits are: (a) convergent rate for Newton method is 

quadratic, and thus, there is a lot to gain in finding its 

direction, (b) they form a good starting point if f”(x) is 

positive definite, and (c) they are simple and easy to 

implement. However, its demerits includes: (a) they are not 

globally convergent for many problems, (b) may diverge if 

the starting point approximation is far from the solution, (c) 

it fails if hessian matrix is not inverted, and (d) requires 

analytic second order derivatives of f. Also, the method is 

seen as an approximation of the Newton Raphson method 

(Dennis and Moore, 1977; Liu and Storey, 1991).  

𝒙𝒌+𝟏 =  𝒙𝒌 − 
𝒇(𝒙)

𝒇′(𝒙)
   (𝟏𝟏) 

Consider behaviour of Quasi Newton method from 

Broyden’s class of unconstrained optimization task given by: 

min{f(x): x ɛ RN}. Class consists of iterations of the form:  

𝒙𝒌+𝟏  ←  𝒙𝒌 +  𝜶𝒌𝝆𝒌 𝒘𝒉𝒆𝒓𝒆 𝝆𝒌 =  − 𝜷𝒌
−𝟏𝒈𝒌   (12) 

gk is gradient of f at xk, αk is stepsize and hessian 

approximation 𝜷𝒌 is updated by Broyden (1967) and Cauchy 

(1987): 

𝜷𝒌+𝟏 =

 𝜷𝒌 − 
𝜷𝒌𝒔𝒌𝒔𝒌

𝑻𝜷𝒌

𝒔𝒌
𝑻𝜷𝒌𝒔𝒌

+  
𝒚𝒌𝒚𝒌

𝑻

𝒚𝒌
𝑻𝒔𝒌

+  ∅ 𝒔𝒌
𝑻𝜷𝒌𝒔𝒌 𝒗𝒌𝒗𝒌

𝑻  (𝟏𝟑)  

This yields two update formulae: For ∅ = 0, yields Broyden, 

Fletcher, Goldfarb and Shanno (BFGS) method; while 

∅ = 1, yields Davidson, Fletcher and Powell (DFP) method 

(Dennis and Moore, 1977). Dixon (1972) notes that with 

exact line search, all class members yield same iterates and 

their performance varies markedly. We assume step-size αk 

is chosen by an inexact line search satisfying two conditions 

as thus: 

𝑓 𝑥𝑘 + 𝛼𝑘𝜌𝑘 ≤ 𝑓 𝑥𝑘 +  𝜎𝛼𝑘𝑔𝑘
𝑇𝜌𝑘     (14) 

𝑔(𝑥𝑘 + 𝛼𝑘𝜌𝑘)𝑇𝜌𝑘  ≥  𝛽𝑔𝑘
𝑇𝜌𝑘                    (15) 

Dennis and Moore (1977) note several important results 

about this class of methods is that they do not require an 

exact line search. If all assumptions hold that: x* is the 

minimize of f, the hessian matrix H is positive definite, αk = 1 

in DFP/BGFS, then Eq. 16 is true and xk converges to x* Q-

superlinearly, and its sum will be finite, if ||x1–x*|| and || 𝛽1–
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H|| are sufficiently small and stepsize αk=1 will satisfy the 

line search conditions of Eq. 14 and 15 (Starchuski, 1981; 

Ritter, 1979 and Griewank and Toini, 1982). 

   xk+1 − x∗  <  ∞    (16)

∞

k=0

 

2.3 DFP as Preprocessor 
DFP optimizes (with/without an exact line search). Here, 

DFP computes solution of a given quadratic functions (as 

problem domain) via stochastic hybrid models, define 

convergence properties and state its influence on such 

convergence properties. The algorithm is (Raydan, 2003; 

Fletcher, 1987): 

At iteration i, DO:  

1. Step1 – choose Ai  H-1 (inverse of hessian matrix at i). 

2. Step2 – if xi is optimal, stop; Else obtain the search 

direction pi by solving: 𝜌𝑖 = −𝐴𝑖∇𝑓𝑖(𝑥) 

3. Step3 – Minimize f(x) in the direction of pi via 

min
𝛼

𝑓 𝑥𝑖 + 𝛼𝜌𝑖  𝑡𝑜 𝑓𝑖𝑛𝑑 𝛼 

4. Step4 – define 𝜌𝑖 =  𝑥𝑖+1 − 𝑥𝑖 =  ∆𝑥𝑖  (𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥) 

𝑦𝑖 = ∇𝑓𝑖+1 𝑥 − ∇𝑓𝑖 𝑥 =  ∆𝑔𝑖(𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) 

5. Step5 – Compute: 𝛽𝑖 =  
(𝜌 𝑖)𝑇 𝜌 𝑖 

(𝜌 𝑖)𝑇 𝑦 𝑖 
 

𝐶𝑖 =
−𝐴𝑖𝑦

𝑖(𝐴𝑖𝑦
𝑖)𝑇

𝐴𝑖𝑦
𝑖(𝑦𝑖)𝑇

 

6. Step6 – Update the hessian matrix A as thus 

Ai+1 = Ai + Bi + Ci 

Set i = i + 1 and return to step 2 

3. INTELLIGENT OR SOFT 

COMPUTING 
Optimization methods tuned via Artificial Intelligence 

models have yielded biological, evolutionary and stochastic 

heuristic whose implementation span across medicine, 

electronics etc – to mention a few, and examples include 

genetic algorithm, simulated annealing, ant colony and 

particle swarm optimization, gravitational search algorithm, 

fuzzy, bacteria foraging etc., today referred to as soft-

computing (Ojugo, 2012a). 

3.1 Artificial Neural Network (ANN) 
ANN as a data processing model is inspired by biological 

neurons of the human brain – and consists of interconnected 

neurons, whose major feat is in their ability to learn by 

example via simulation, making them universal estimators. It 

learns as neurons share electromechanical signals via 

dendrites and synapse axon that converts the signals. This 

helps it process data. Learning occurs by adjusting the 

synapses weight(s), and inputs are summed by adder. Based 

on the task at hand, its activation function limits its output. A 

simple mathematical model as in Eq 18 with its synapse 

weight connections helps modulate the associated inputs and 

nonlinear feats exhibited in neurons via an activation 

function as thus (Pham and Liu, 1995): 

∅ =  𝑓 𝑛𝑒𝑡 = 𝑓  𝑋𝑖 ∗ 𝑊𝑖𝑗       18 

𝑚

𝑖=1

 

Ojugo et al (2013a, b) note encoded, ANN has three basic 

layers: input, hidden and output, and two configurations: (a) 

feedforward network (allows data to flow from input-to-

output with no feedback as the network extends over 

multiple layers), and (b) recurrent network (which has a 

dynamic feedback to help the network undergo relaxation 

and evolve to a stable state if there is no further change in its 

activation values and output. Output change is significant 

and dynamic behavior constitutes its output). Lee and Kang 

(1990) the configuration of choice is dependent on the 

application area, feats and system requirement. Various 

methods are used to set its connection strengths so that 

learning takes place. These includes: (a) explicit connection 

via apriori knowledge, and (b) implicit connection post-

priori in which the network is trained to learn patterns that 

changes its weight in a learning rule. Learning is grouped 

into: 

a. Supervised – here, input vector with set of desired 

responses, one for each node, is relayed to the output. A 

forward pass is done and errors between desired and 

actual response for each node in output is found, and 

used to determine weight changes based on the learning 

algorithm Thus, desired output signals is yielded by an 

external teacher. Examples are Perceptron, delta and 

back-propagation (Ojugo et al, 2012b).  

b. Unsupervised – Here, output is trained to respond to 

clusters of patterns that help network to discover 

statistical, salient feats in the input, with no prior 

knowledge of how patterns are grouped. Thus, model 

develops its own representation of the input (Conway et 

al, 1998). 

c. Reinforcement – output learns what to do, map states to 

actions and must discover actions that yield the most 

reward by trying them. Such actions may affect not only 

the immediate data, but also the rest states. Its trial and 

error search and delayed reward are its two 

distinguishing feats (Plumb et al, 2005). 

Study adopts the TLRN (MLP with short memory) 

architecture with unsupervised learning and RBF a control 

model to compare results obtained by training network to 

yield results and provide a fail-safe to eradicate noise in 

realtime data-stream. Thus, the network learns from 

experiences, generalized from previous datasets to new ones 

with abstract feats, at its inputs containing irrelevant data 

(Denton and Hung, 1996). Trial-error is used in selecting 

number of hidden layers and nodes in each hidden layer. 

Previous results have shown that ANN with a hidden layer 

outperforms those with two/more – as this only increases the 

number of parameter that only complicates training. The 

optimal hidden layer size is found by systematically 

increasing the number of hidden node until network’s 

performance shows no further improvement or it longer 

improves significantly. The network is complex enough to 

accurately simulate dynamic, nonlinear feats. Standard tasks 

use 15, 30, 45, 60 and 100 hidden nodes (on each layer) to 

examine model’s performance and our study however, 
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adopts single hidden layer with 18-hidden nodes (Pham and 

Liu, 1995; Pham and Karaboga,1999 and Pham et al, 2006).   

3.2 Gravitation Search Algorithm (GSA) 
GSA is based on Newton’s laws of gravity and motion with 

its main idea, being to consider isolated system of masses, 

where every mass represents a solution to a certain problem. 

Law of gravity states that every particle attracts another and 

the gravitational force between particles are directly 

proportional to the product of their masses and inversely 

proportional to distance between them (Rashedi et al, 2009a). 

Thus, an agent’s performance depends on its mass. They 

attract each other via gravitational pull towards those with 

heavier mass. Agents are initialized at start point, are 

randomly located in space so that gravitational force is 

defined as thus: 

𝑭𝒊𝒋 = 𝑮 𝒕 =
𝑴𝒊 𝒕 ∗ 𝑴𝒋(𝒕)

𝑹𝒊𝒋 𝒕 +  𝜺
  𝑿𝒋 𝒕 

−  𝑿𝒊 𝒕         (𝟏𝟗)  

Rij is the Euclidean distance between masses for the objects 

(i and j) masses, G(t) is gravitation force at time t with small 

constant ε – which decreases in time to control the 

population and search’s accuracy. Thus, the total force acting 

on an agent is: 

𝑭𝒊
𝒅 =  𝒓𝒂𝒏𝒅 𝒊 ∗ 𝑭𝒊𝒋        (𝟐𝟎)

𝒋∈𝒌𝒃𝒆𝒔𝒕,𝒋≠𝟏

 

rand randomizes agents’ initial state at intervals [0,1]. 

Acceleration of i at time t, in d dimension is directly 

proportional to force acting on agent I, and inversely 

proportional to agent’s mass: 

𝐴𝑖𝑑 𝑡 =
𝐹𝑖𝑑(𝑡)

𝑀𝑖𝑗 𝑡 
            (21) 

 

Fig 1: Steps for Gravitational Search Algorithm 

The next velocity of an agent is a function of its current 

velocity plus current acceleration, which updates next 

position given by X as thus: 

𝑉𝑖𝑑 𝑡 + 1 =  𝑟𝑎𝑛𝑑 𝑖 ∗  𝑉𝑖𝑑 𝑡 +  𝐴𝑖𝑑 𝑡      22  

𝑋𝑖𝑑 𝑡 + 1 =  𝑋𝑖𝑑 ∗  𝑉𝑖𝑑(𝑡 + 1)                            23  

Vi
d(t) is agent velocity in d at time t, rand is a random 

number between [0,1]. Mass is updated as fitness value of 

agent i at time t given as: 

𝑀𝑖 𝑡 =  
𝐹𝑖𝑡 𝑖 −  𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡 𝑡 −  𝑤𝑜𝑟𝑠𝑡(𝑡)
                (24) 

Best(t)/Worst(t) are strongest/weakest agents from their 

fitness route. For a maximization task as the one at hand, 

they are defined: 

𝑤𝑜𝑟𝑠𝑡 𝑡 =  max
𝑗∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡                 25  

𝑏𝑒𝑠𝑡 𝑡 =  min
𝑗 ∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡                 26  

At start, agents are located as solution points trained in ANN, 

and then passed over to GSA so that with each cycle, agent 

velocity and position is updated via Eq. 22 and 23; while G 

and M are computed via Eq. 19 and 24. The model stops if 

an  

optima is found or stops using its stop criterion (this is 

computational expensive). GSA uses exploration ability to 

navigate and guarantee its choice value for random agents, 

and exploitation ability to allow agents of heavier masses 

move slower in order to attract those of lesser mass as well 

as locate optima, around a good solution in the shortest time 

possible (Rashedi et al, 2009b and Ojugo, 2012a). 

3.3 ANN-Cultural Genetic Algorithm 
Perez and Marwala (2011) GA as inspired by Darwinian 

evolution and genetics (survival of fittest), consists of a 

population (data) chosen for natural selection with potential 

solutions to a specific task. Individuals with genes close to its 

optimal, is said to be fit. Fitness function determines how 

close an individual is to the optimal solution. Each solution is 

an individual whose optimal is found via 4-operators namely: 

a. Initialize – From the population, individual data are 

encoded into format suitable for selection. Each 

encodings has its merit/demerit. Binary encoding is 

computationally more expensive to achieve. Decimal 

encoding has greater diversity in chromosome and 

greater variance of pools generated; float-point 

encoding or its combination is more efficient than 

binary. Thus, it encode as fixed length vectors for one 

or more pools of different types. The fitness function 

evaluates how close a solution is to its optimal – after 

which they are chosen for reproduction. If solution is 

found, function is good; else, is bad and not selected for 

crossover. The fitness function is the only part with 

knowledge of task. If more solutions are found, the 

higher its fitness value.  

b. Selection – Good fit individuals close to optimal are 

chosen to mate. The larger the number of selected, the 

better the chances of yielding fitter individuals. This 

continues until one is chosen, from the last two/three 
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remaining solutions, to become selected parents to new 

offspring. Selection ensures the fittest individuals are 

chosen for mating but also allows for less fit individuals 

from the pool and the fittest to be selected. A selection 

that only mates the fittest is elitist and often leads to 

converging at a local optima. 

c. Crossover – ensures genes of fitter individuals are 

exchanged to yield a new, fitter pool. There are two 

crossover types (depends on encoding type used) as: (a) 

simple crossover for binary encoded pool via particular- 

or multi- point; and all genes are from one parent, and 

(b) arithmetic crossover allows new pool to be created 

by adding an individual’s percentage to another. 

d.   Mutation alters chromosomes by changing its genes or 

its sequence, to ensure that a new pool converges to 

global minima (instead of local optima). Algorithm 

stops if optimal is found or after number of runs (though 

computationally expensive) if a number of new pools 

are created or once no better solution is found. Genes 

may change based on probability of mutation rate. 

Mutation improves the much needed diversity in 

reproduction and its algorithm is as thus: 

Mutation Algorithm {} 

1. Input: A chromosome rule 

2. Output: Mutated solution, a fns of mutation rate 

3. Set mutation threshold (between 0 and 1) 

4. For each network attribute in chromosome 

5. Generate a random number between 0 and 1 

6. If random number > mutation threshold then 

7. Generate Random value 

8. Set solution attribute value with  

9. Generated attribute value 

10. End if: End For Each 

Reynolds (1994) Cultural GA as a variant of GA consists of 

belief spaces namely: (a) Normative (has specific range 

values which an individual is bound), (b) Domain (data about 

task domain), (c) Temporal (data about events’ space is 

available), and (d) Spatial (has topographical data). In 

addition, an influence function mediates between belief 

space and the pool – alter individuals to ensure the pool 

conforms to the belief space. CGA is chosen to yield a pool 

that does not violate its belief space and reduces number of 

possible individuals generated as optimum is found (Heppner 

and Grenander, 1990).  

Once initialized, ANN computes individual fitness and 30-

individual are selected as the new sub pool via tournament, 

to determine mating individuals. Thus, after training, 

selected data are moved to the CGA model – with only 

crossover and mutation applied, to help the network model 

learn dynamic and non-linear feats in the historic, obtained 

data.  

With GA, only crossover (single point) and mutation is 

carried out – and data between 1 and 30 is randomly 

generated via Gaussian distribution, corresponding to 

crossover points (since prior now, all genes are from a 

parent). Now, other parents contribute the rest to yield new 

individuals, whose genetic makeup is combination of both 

parents. They are then allowed to undergo mutation from 

which 3-random genes are selected for another mutation and 

are allocated new random values that still conforms to the 

belief space. The number of mutation applied depends on 

how far CGA is progressed (how fit is the fittest individual in 

the pool). Thus, number of mutations equals fitness of the 

fittest individual divided by 2. New individuals replace old 

ones in pool, with low fitness values (creating a new pool). 

This continues until individual with a fitness value of 0 is 

found – indicating that the solution has been reached (Ursem 

et al, 2002). 

Note that initialization and selection via ANN ensures the 

first 3-beliefs are met; while mutation ensures the fourth is 

met. Also, an influence function helps influence how many 

mutations takes place. Knowledge of solution (how close 

task is to solution) has direct impact on how algorithm is 

processed. Algorithm stops when best individual has a fitness 

of 0. 

3.4 Model Performance Evaluation 
Model performance is evaluated via computed values of 

mean square error (MSE), mean absolute error (MAE) and 

mean relative error (MRE), coefficient of efficiency (COE) 

and coefficient of determination (r2) (Nash and Sutcliffe, 

1970): 

𝑀𝑆𝐸 =  1
𝑛   {(𝑌𝑝𝑖 − 𝑌𝑖𝑜)2}1/2       (27)

𝑚

𝑖=1

 

 

𝑀𝐴𝐸 =  1
𝑛    𝑌𝑝𝑖 − 𝑌𝑖𝑜                 (28)

𝑚

𝑖=1

 

𝑀𝑅𝐸 =  1
𝑛   

|𝑌𝑝𝑖 − 𝑌𝑖𝑜|

𝑌𝑖𝑜
             (29)

𝑚

𝑖=1

 

𝐶𝑂𝐸 =  1 − 
(𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚 )2

(𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠 )2
               (30) 

𝑟2 =
[ 𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠 )  𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠 ) ]2

 𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠 ) 2 𝑄𝑠𝑖𝑚 − (1 − 𝑄𝑠𝑖𝑚 ) 2
  (31)  

 

4. RESULT PRESENTATION / 

DISCUSSION 
Performance analysis is as presented below: 

Table 1. Model Performance Evaluation 

Model MSE MRE MA

E 

COE 

(R) 

COD 

(r2) 

DFP 0.67 0.91 0.78 0.672 0.650 

ANN 0.87 0.79 0.75 0.781 0.966 

ANNGSA 0.76 0.81 0.62 0.753 0.921 

ANNCGA 0.76 0.77 0.76 0.688 0.812 

 

The result of the models simulation is as thus: 
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Table 2. Optmization using stachastic methods and DFP 

Optimization Method High Ave. Low  

DFP 0.72 0.70 0.72 

ANN (TLRN) 0.67 0.60 0.50 

ANNGSA 0.56 0.49 0.45 

ANNCGA 0.91 0.89 0.72 

Table 3. Optimization with DFP as pre-processor 

Optimization Method High Ave. Low  

ANN (TLRN) 0.87 0.81 0.50 

ANNGSA 0.61 0.54 0.54 

ANNCGA 0.91 0.89 0.72 

 

The results are as thus:  

a. ANNCGA took 21 seconds to find the solution after 98 

iterations (at best). ANNCGA was run 15 times (to 

eradicate non-biasness), it found optima each time – and 

the time varied significantly between 21 seconds and 4 

minutes – as its convergence time depends on how close 

the initial population is to the solution as well as on 

mutation applied to the individuals in the pool. 

b. ANNGSA (at best) 18seconds after 321 iterations. GSA 

used a gravitational pull and mass update of 282 

iterations before finding a solution. It was run 25 times 

and solution was found each time on a range between 

4seconds and 3minutes. Its convergence time depends 

on initialization, gravitational cum mass updates. 

c. ANN arrived at solution 32seconds at best after 

401iterations. On 25 runs, solution time is between 

42seconds and 8minutes – and its convergence depends 

on it weight and bias choices. 

With a common solution space, fitness function and selection 

criteria, weights set between 0.2/0.35, and biases = 0.75 

yields a better and faster convergence, before the solutions 

are crossed over to CGA, GSA – as supported by Perez and 

Marwala (2011), Mandic and Chambers (2001), Meade and 

Fernandez (1994) and Ojugo et al (2013a, b). Other values 

led to slower and/or non-convergence. The number of nodes 

in hidden layer greatly influences a network’s performance. 

If it is small, network may not achieve its accuracy. If it is 

too many, may result in overtraining.  

5. STUDY RATIONALE 
Models are educational tools to help compile existing 

knowledge about a task. They serve as language to 

communicate hypotheses, help us investigate input 

parameters crucial in estimation and help us gain better 

insight of a task. Thus, model development, sensitivity and 

failure analysis helps reflect on theories and functioning of 

nature systems. The rationale for the implementation of 

hybrids are: 

a. Artificial Neural Networks: ANN’s major feat is its 

ability to learn to approximate a function – making it a 

flexible approximator; while SA is an intelligent search 

heuristics for global optimum. The adaptive property of 

ANN is a huge merit in modeling dynamic, changing 

states.  

b. Genetic algorithms: GA was not originally developed 

for optimization; But, it offers statistical guarantee of 

global convergence to an optimal point. It is best suited 

for some problems. It start with an initial random 

population, and allocate increasing trials to regions of 

the search space found to have high fitness. This is a 

disadvantage if the maximum is in a small region, 

surrounded on all sides by regions of low fitness. This 

kind of function is difficult to optimize by any method, 

and here the simplicity of the iterated search usually 

wins. 

c. DFP Optimize: Many well-behaved continuous 

functions have been developed which rely on using data 

about the gradient of the function to guide the direction 

of search. If the derivative of the function cannot be 

computed, because it is discontinuous, for example, 

these methods often fail. Such methods are generally 

referred to as hill-climbing. They can perform well on 

functions with only one peak (unimodal functions). But 

on functions with many peaks, (multimodal functions), 

they suffer from the problem that the first peak found 

will be climbed, and this may not be the highest peak. 

Having reached the top of a local maximum, no further 

progress can be made. 

6. CONCLUSION/ 

RECOMMENDATIONS 
Model’s application as an intellectual or educational tool 

requires less accurate numerical agreement between 

predictions and observations. Rather, it requires a feedback 

mechanism as more important. Models that are 

understandable and manageable can be fully explored to help 

us better comprehend the process at hand. We thus, sought a 

balance between complexity and simplicity (as crucial in 

studying the relevant processes of a models and better yet, to 

understand the workings of the model). A detailed model 

may not be operationally applicable in larger scale, but its 

study can help to develop an applicable ones. Very simple 

models may not give enough new data whereas complex 

ones are not easily understandable. Nonetheless, models 

support experts in making estimates about a task. 

The study recommends that though the techniques and 

models are time-consuming, DFP/BGFS should be adopted 

and adapted to act as preprocessor that quickly provide a 

good initial solution for models aiming to resolve quadratic 

equations as it will in turn, reduce considerably the time 

taken as well as improve the quality of the outputted result. 
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