

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

10

Stochastic Solution on Convergence Property of

Quadratic Functions

Adekunle Y. A.
Babcock University

Ilishan-Remo
Ogun State, Nigeria

Ebiesuwa Seun
Babcock University

Ilishan-Remo
Ogun State, Nigeria

Yoro R. E.
Babcock University

Ilishan-Remo
Ogun State, Nigeria

ABSTRACT
Constraints satisfaction problems (CSPs) aim at solution via

algorithms that search a domain space for goal states. The

solution of which must satisfy all constraints and guarantees

explicit reasoning structure that conveys data about the

problem to the algorithm. Thus, it assigns to an output, a set

of variables that satisfies a set of constraints in its bid to

prune off huge portion of the search space. This study

presents solutions to quadratic functions via David Fletcher

Powell method and stochastic method of optimization. To

aim this purpose, hybrid neural networks are trained using

DFP as a pre-processor to yield approximate solutions to the

quadratic function. A trial solution of the quadratic equation

is written as sum of two parts: (a) first part satisfies the initial

condition for unconstrained optimization using DFP and

hybrids as separate methods to solve a quadratic function;

while (b) second part uses DFP as a pre-processor with

adjustable parameters of for the ANN-TLRN hybrid. Results

show that presented method introduces a closer form to the

analytic solution. These present method is easily extended to

solve a wide range of problems.

Keywords
Stochastic, elitist, network, function, optimization, search space,

solution

1. INTRODUCTION
Search methods aim to maximize or minimize constraint

satisfaction problem objective functions and yield a feasible,

optimal (closest to best) solution. CSPs are dynamic,

nonlinear and complex – making the search for its solution

cumbersome and inexplicable to resolve. Thus, search

methods must be tuned to resolve CSP optimization as it

relates inputs with uncontrollable parameter in the modeled

system to satisfy all possible constraints to yield an output

that is both flexible, optimal, easily adapted and robust

(Ojugo, 2013a).

Nonlinear systems modeled via mathematical equations,

appear in diverse spheres of life as dynamic feats and

phenomena in control systems, medicine, communication

etc. Such systems are modeled as quadratic functions and

various methods are used to solve quadratic/differential

equations. Finding the optimal solution of nonlinear,

quadratic equations is still a challenge task (Fletcher and

Reeves, 1964; Forsythe, 1986 and Friedlander et al, 1999).

Many studies have shown that parallel processor computers

in order to solve the first order differential equation using

Hopfield neural network models as a factor of speed; while

some, used feedforward ANN to solve linear/nonlinear

ordinary differential equations (Ghalambaz et al, 2011);

while Lagaris et al (1998) went further to represent a new

method to solve first-order linear ordinary and partial

equations using ANN, as was further buttressed by Malek

and Shekari (2006). Khan et al (2009) provided a hybrid

ANNPSO intelligence model to solve the well-known

Wessinger equation (though the model could not satisfy

initial and boundary conditions). It was improved by

Ghalambaz et al (2011); while Khan et al (2009) furthered to

satisfy the solution for initial and boundary condition

problems. The study presents comparative stochastic model

for solving quadratic equation using DFP as preprocessor to

seek optimality and convergence property. The paper is has:

Section 1 as detailed description of optimization, Section 2

as problem formulation, Section 3 is brief review of adopted

stochastic frameworks, Section 4 discusses results. And

finally, conclusions and directions of future research.

1.1. Mathematical Optimization
Mathematical optimization is a selection of the best element

from a set of available alternatives. It thus, aims either at a

maximization or minimization task of real function that

symmetrically choose inputs from an allowed set of

variables, to compute the function’s output by finding the

best available values from a set of alternatives via the

objective function in a given domain (Ojugo, 2012b). Armijo

(1966) and Ojugo (2012a) notes that:

Definition 1: A continuous optimization defined as a pair (S,

f). S is set of possible solutions: S = RN and N is number of

controllable parameters and R is the real number line. Thus, f

is a multi-objective function (f: S  R) to be optimized –

where a solution vector X is as limited between lower and

upper bounds (Xlb≤X≤Xub). For maximization task (search

for a solution greater than or equal to all other solutions), and

minimization task (search for solution that is smaller than or

equal to the all other solutions).The set of maximal and

minimal solution Smax  S of a function f: S  R defined as:

Xmax  Smax   X  S: f(Xmax)  f(X) (1)

Xmin  Smin   X  S: f(Xmin)  f(X) (2)

2. DFP: THE PROBLEM

FORMULATION
We aim to minimize

𝒇 𝒙𝟏𝒙𝟐 = (𝒙𝟐 − 𝒙𝟏)𝟐 + (𝟏 − 𝒙𝟏)𝟐 𝒘𝒊𝒕𝒉 𝒙𝟏 =
𝟎
𝟎
 and

𝒇 𝒙𝟏𝒙𝟐 = 𝒙𝟏
𝟐 + 𝟐𝟓𝒙𝟐

𝟐, 𝒙𝟏 =
𝟐
𝟐
 𝒂𝒔 𝒔𝒕𝒂𝒓𝒕 𝒑𝒐𝒊𝒏𝒕𝒔

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

11

Dai (2001) notes that a point x* ɛ A is a global minimum of

fo(x) if: 𝒇 𝒙𝟎 ≤ 𝒇 𝒙 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ɛ 𝑨 𝟑 . An ideal

optimization allows its objective function to have a unique

minimize. Thus, the function in Eq. 3 is a global minimizer.

Conversely, a point x* ɛ A is a local minimize if for any ɛ >

0, f(x*) ≤ f(x) and for any x ɛ A, ||x – x*|| ≤ ɛ

2.1 Line Search Method / Algorithm
Dai et al (2002) and Polyak (1969) notes that numeric

method algorithm for unconstrained optimization (as

grouped into line search and trust region) aims to minimize

the nonlinear function f(x) as in Eq. 4. Thus, an iterative,

continuous f(x) with initial point x1, its kth iteration (new

point xk+1) is computed as thus (Barzilar, 1988 and Raydan,

2003):

Y = 𝐌𝐢𝐧𝒙 𝜺 𝑹𝑵 𝒇 𝒙 (𝟒)

The goal of convergence analysis is to study feats of

sequence {xk} generated and compare the differences

between the convergence performances of the various

models (Batruni, 1991; Powell, 1971 and 1976). The

sequence xk generated is said to converge to a point x* if:

𝒀 = 𝐋𝐢𝐦
𝒌→∞

 𝒙𝒌 − 𝒙∗ = 𝟎 (𝟓)

With the solution for x* as in Eq. 5 not available, a possible

replacement is Eq. 6, which unfortunately, also does not

guarantee the convergence of xk will then yield Eq. 6 as

given by Daniel (1967) and Gottlieb and Orszag (1977) as

thus:

𝒀 = 𝐋𝐢𝐦
𝒌→∞

 𝒙𝒌 − 𝒙𝒌−𝟏 = 𝟎 (𝟔)

However, the global convergence for unconstrained

optimization aims to prove that Eq. 7 ensures xk is close to

the set of stationery points where (x) = 0, or Eq. 8, which

ensures that a least subsequence of xk is close to the set of the

stationery points (Dai and Yuan 1999; 2003).

𝐋𝐢𝐦
𝒌→∞

 𝒈𝒌 = 𝟎 (𝟕)

𝐋𝐢𝐦 𝑰𝒏𝑭
𝒌→∞

 𝒈𝒌 = 𝟎 (𝟖)

But 𝒈𝒌 = 𝒈 𝒙𝒌 = 𝛁𝒇 𝒙𝒌 . Local convergence aims at the

convergence speed of the sequence generated by the

algorithm. In studying this, we assume a sequence xk

converges to a local minimize x*, so that the second order

sufficient condition and the Newton method, can converge

very slowly (Polak, 1969 and Polyak, 1969).

2.2 Quasi-Newton Method
Dennis and Moore (1974) note Newton’s method as the basis

for Quasi-Newton, and most widely used for solving

nonlinear equations and unconstrained optimization. If for a

smooth function f(x) and a positive hessian, then Second

order Taylor’s expansion yields thus:

𝒇 𝒙 + 𝒑 ≅ 𝒇 𝒙 + 𝒑𝑻𝒇 𝒙 +
𝟏

𝟐
𝒑𝑻𝒇 𝒙

𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕𝒊𝒂𝒕𝒊𝒏𝒈 𝒚𝒊𝒆𝒍𝒅𝒔
𝝏𝒇(𝒙 + 𝒑)

𝝏𝒑
 ≅ 𝛁𝒇 𝒙 + 𝛁𝟐

𝒇 𝒙

= 𝟎

𝑻𝒉𝒖𝒔, 𝛁𝟐
𝒇 𝒙 = −𝒇 𝒙 (9)

As long as 2
f(x) is a positive definite, 2

f(x)p is Newton

direction, and the next approximation is:

𝒙𝒌+𝟏 = 𝒙𝒌 −
𝛁𝒇(𝒙)

𝛁𝟐
𝒇(𝒙)

 (𝟏𝟎)

Newton direction has proven to be more expensive than

Steepest Descent direction. We must compute the hessian

matrix and invert it (not applicable with Quasi Newton). Its

merits are: (a) convergent rate for Newton method is

quadratic, and thus, there is a lot to gain in finding its

direction, (b) they form a good starting point if f”(x) is

positive definite, and (c) they are simple and easy to

implement. However, its demerits includes: (a) they are not

globally convergent for many problems, (b) may diverge if

the starting point approximation is far from the solution, (c)

it fails if hessian matrix is not inverted, and (d) requires

analytic second order derivatives of f. Also, the method is

seen as an approximation of the Newton Raphson method

(Dennis and Moore, 1977; Liu and Storey, 1991).

𝒙𝒌+𝟏 = 𝒙𝒌 −
𝒇(𝒙)

𝒇′(𝒙)
 (𝟏𝟏)

Consider behaviour of Quasi Newton method from

Broyden’s class of unconstrained optimization task given by:

min{f(x): x ɛ RN}. Class consists of iterations of the form:

𝒙𝒌+𝟏 ← 𝒙𝒌 + 𝜶𝒌𝝆𝒌 𝒘𝒉𝒆𝒓𝒆 𝝆𝒌 = − 𝜷𝒌
−𝟏𝒈𝒌 (12)

gk is gradient of f at xk, αk is stepsize and hessian

approximation 𝜷𝒌 is updated by Broyden (1967) and Cauchy

(1987):

𝜷𝒌+𝟏 =

 𝜷𝒌 −
𝜷𝒌𝒔𝒌𝒔𝒌

𝑻𝜷𝒌

𝒔𝒌
𝑻𝜷𝒌𝒔𝒌

+
𝒚𝒌𝒚𝒌

𝑻

𝒚𝒌
𝑻𝒔𝒌

+ ∅ 𝒔𝒌
𝑻𝜷𝒌𝒔𝒌 𝒗𝒌𝒗𝒌

𝑻 (𝟏𝟑)

This yields two update formulae: For ∅ = 0, yields Broyden,

Fletcher, Goldfarb and Shanno (BFGS) method; while

∅ = 1, yields Davidson, Fletcher and Powell (DFP) method

(Dennis and Moore, 1977). Dixon (1972) notes that with

exact line search, all class members yield same iterates and

their performance varies markedly. We assume step-size αk

is chosen by an inexact line search satisfying two conditions

as thus:

𝑓 𝑥𝑘 + 𝛼𝑘𝜌𝑘 ≤ 𝑓 𝑥𝑘 + 𝜎𝛼𝑘𝑔𝑘
𝑇𝜌𝑘 (14)

𝑔(𝑥𝑘 + 𝛼𝑘𝜌𝑘)𝑇𝜌𝑘 ≥ 𝛽𝑔𝑘
𝑇𝜌𝑘 (15)

Dennis and Moore (1977) note several important results

about this class of methods is that they do not require an

exact line search. If all assumptions hold that: x* is the

minimize of f, the hessian matrix H is positive definite, αk = 1

in DFP/BGFS, then Eq. 16 is true and xk converges to x* Q-

superlinearly, and its sum will be finite, if ||x1–x*|| and || 𝛽1–

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

12

H|| are sufficiently small and stepsize αk=1 will satisfy the

line search conditions of Eq. 14 and 15 (Starchuski, 1981;

Ritter, 1979 and Griewank and Toini, 1982).

 xk+1 − x∗ < ∞ (16)

∞

k=0

2.3 DFP as Preprocessor
DFP optimizes (with/without an exact line search). Here,

DFP computes solution of a given quadratic functions (as

problem domain) via stochastic hybrid models, define

convergence properties and state its influence on such

convergence properties. The algorithm is (Raydan, 2003;

Fletcher, 1987):

At iteration i, DO:

1. Step1 – choose Ai  H-1 (inverse of hessian matrix at i).

2. Step2 – if xi is optimal, stop; Else obtain the search

direction pi by solving: 𝜌𝑖 = −𝐴𝑖∇𝑓𝑖(𝑥)

3. Step3 – Minimize f(x) in the direction of pi via

min
𝛼

𝑓 𝑥𝑖 + 𝛼𝜌𝑖 𝑡𝑜 𝑓𝑖𝑛𝑑 𝛼

4. Step4 – define 𝜌𝑖 = 𝑥𝑖+1 − 𝑥𝑖 = ∆𝑥𝑖 (𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥)

𝑦𝑖 = ∇𝑓𝑖+1 𝑥 − ∇𝑓𝑖 𝑥 = ∆𝑔𝑖(𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡)

5. Step5 – Compute: 𝛽𝑖 =
(𝜌 𝑖)𝑇 𝜌 𝑖

(𝜌 𝑖)𝑇 𝑦 𝑖

𝐶𝑖 =
−𝐴𝑖𝑦

𝑖(𝐴𝑖𝑦
𝑖)𝑇

𝐴𝑖𝑦
𝑖(𝑦𝑖)𝑇

6. Step6 – Update the hessian matrix A as thus

Ai+1 = Ai + Bi + Ci

Set i = i + 1 and return to step 2

3. INTELLIGENT OR SOFT

COMPUTING
Optimization methods tuned via Artificial Intelligence

models have yielded biological, evolutionary and stochastic

heuristic whose implementation span across medicine,

electronics etc – to mention a few, and examples include

genetic algorithm, simulated annealing, ant colony and

particle swarm optimization, gravitational search algorithm,

fuzzy, bacteria foraging etc., today referred to as soft-

computing (Ojugo, 2012a).

3.1 Artificial Neural Network (ANN)
ANN as a data processing model is inspired by biological

neurons of the human brain – and consists of interconnected

neurons, whose major feat is in their ability to learn by

example via simulation, making them universal estimators. It

learns as neurons share electromechanical signals via

dendrites and synapse axon that converts the signals. This

helps it process data. Learning occurs by adjusting the

synapses weight(s), and inputs are summed by adder. Based

on the task at hand, its activation function limits its output. A

simple mathematical model as in Eq 18 with its synapse

weight connections helps modulate the associated inputs and

nonlinear feats exhibited in neurons via an activation

function as thus (Pham and Liu, 1995):

∅ = 𝑓 𝑛𝑒𝑡 = 𝑓 𝑋𝑖 ∗ 𝑊𝑖𝑗 18

𝑚

𝑖=1

Ojugo et al (2013a, b) note encoded, ANN has three basic

layers: input, hidden and output, and two configurations: (a)

feedforward network (allows data to flow from input-to-

output with no feedback as the network extends over

multiple layers), and (b) recurrent network (which has a

dynamic feedback to help the network undergo relaxation

and evolve to a stable state if there is no further change in its

activation values and output. Output change is significant

and dynamic behavior constitutes its output). Lee and Kang

(1990) the configuration of choice is dependent on the

application area, feats and system requirement. Various

methods are used to set its connection strengths so that

learning takes place. These includes: (a) explicit connection

via apriori knowledge, and (b) implicit connection post-

priori in which the network is trained to learn patterns that

changes its weight in a learning rule. Learning is grouped

into:

a. Supervised – here, input vector with set of desired

responses, one for each node, is relayed to the output. A

forward pass is done and errors between desired and

actual response for each node in output is found, and

used to determine weight changes based on the learning

algorithm Thus, desired output signals is yielded by an

external teacher. Examples are Perceptron, delta and

back-propagation (Ojugo et al, 2012b).

b. Unsupervised – Here, output is trained to respond to

clusters of patterns that help network to discover

statistical, salient feats in the input, with no prior

knowledge of how patterns are grouped. Thus, model

develops its own representation of the input (Conway et

al, 1998).

c. Reinforcement – output learns what to do, map states to

actions and must discover actions that yield the most

reward by trying them. Such actions may affect not only

the immediate data, but also the rest states. Its trial and

error search and delayed reward are its two

distinguishing feats (Plumb et al, 2005).

Study adopts the TLRN (MLP with short memory)

architecture with unsupervised learning and RBF a control

model to compare results obtained by training network to

yield results and provide a fail-safe to eradicate noise in

realtime data-stream. Thus, the network learns from

experiences, generalized from previous datasets to new ones

with abstract feats, at its inputs containing irrelevant data

(Denton and Hung, 1996). Trial-error is used in selecting

number of hidden layers and nodes in each hidden layer.

Previous results have shown that ANN with a hidden layer

outperforms those with two/more – as this only increases the

number of parameter that only complicates training. The

optimal hidden layer size is found by systematically

increasing the number of hidden node until network’s

performance shows no further improvement or it longer

improves significantly. The network is complex enough to

accurately simulate dynamic, nonlinear feats. Standard tasks

use 15, 30, 45, 60 and 100 hidden nodes (on each layer) to

examine model’s performance and our study however,

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

13

adopts single hidden layer with 18-hidden nodes (Pham and

Liu, 1995; Pham and Karaboga,1999 and Pham et al, 2006).

3.2 Gravitation Search Algorithm (GSA)
GSA is based on Newton’s laws of gravity and motion with

its main idea, being to consider isolated system of masses,

where every mass represents a solution to a certain problem.

Law of gravity states that every particle attracts another and

the gravitational force between particles are directly

proportional to the product of their masses and inversely

proportional to distance between them (Rashedi et al, 2009a).

Thus, an agent’s performance depends on its mass. They

attract each other via gravitational pull towards those with

heavier mass. Agents are initialized at start point, are

randomly located in space so that gravitational force is

defined as thus:

𝑭𝒊𝒋 = 𝑮 𝒕 =
𝑴𝒊 𝒕 ∗ 𝑴𝒋(𝒕)

𝑹𝒊𝒋 𝒕 + 𝜺
 𝑿𝒋 𝒕

− 𝑿𝒊 𝒕 (𝟏𝟗)

Rij is the Euclidean distance between masses for the objects

(i and j) masses, G(t) is gravitation force at time t with small

constant ε – which decreases in time to control the

population and search’s accuracy. Thus, the total force acting

on an agent is:

𝑭𝒊
𝒅 = 𝒓𝒂𝒏𝒅 𝒊 ∗ 𝑭𝒊𝒋 (𝟐𝟎)

𝒋∈𝒌𝒃𝒆𝒔𝒕,𝒋≠𝟏

rand randomizes agents’ initial state at intervals [0,1].

Acceleration of i at time t, in d dimension is directly

proportional to force acting on agent I, and inversely

proportional to agent’s mass:

𝐴𝑖𝑑 𝑡 =
𝐹𝑖𝑑(𝑡)

𝑀𝑖𝑗 𝑡
 (21)

Fig 1: Steps for Gravitational Search Algorithm

The next velocity of an agent is a function of its current

velocity plus current acceleration, which updates next

position given by X as thus:

𝑉𝑖𝑑 𝑡 + 1 = 𝑟𝑎𝑛𝑑 𝑖 ∗ 𝑉𝑖𝑑 𝑡 + 𝐴𝑖𝑑 𝑡 22

𝑋𝑖𝑑 𝑡 + 1 = 𝑋𝑖𝑑 ∗ 𝑉𝑖𝑑(𝑡 + 1) 23

Vi
d(t) is agent velocity in d at time t, rand is a random

number between [0,1]. Mass is updated as fitness value of

agent i at time t given as:

𝑀𝑖 𝑡 =
𝐹𝑖𝑡 𝑖 − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡 𝑡 − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (24)

Best(t)/Worst(t) are strongest/weakest agents from their

fitness route. For a maximization task as the one at hand,

they are defined:

𝑤𝑜𝑟𝑠𝑡 𝑡 = max
𝑗∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡 25

𝑏𝑒𝑠𝑡 𝑡 = min
𝑗 ∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡 26

At start, agents are located as solution points trained in ANN,

and then passed over to GSA so that with each cycle, agent

velocity and position is updated via Eq. 22 and 23; while G

and M are computed via Eq. 19 and 24. The model stops if

an

optima is found or stops using its stop criterion (this is

computational expensive). GSA uses exploration ability to

navigate and guarantee its choice value for random agents,

and exploitation ability to allow agents of heavier masses

move slower in order to attract those of lesser mass as well

as locate optima, around a good solution in the shortest time

possible (Rashedi et al, 2009b and Ojugo, 2012a).

3.3 ANN-Cultural Genetic Algorithm
Perez and Marwala (2011) GA as inspired by Darwinian

evolution and genetics (survival of fittest), consists of a

population (data) chosen for natural selection with potential

solutions to a specific task. Individuals with genes close to its

optimal, is said to be fit. Fitness function determines how

close an individual is to the optimal solution. Each solution is

an individual whose optimal is found via 4-operators namely:

a. Initialize – From the population, individual data are

encoded into format suitable for selection. Each

encodings has its merit/demerit. Binary encoding is

computationally more expensive to achieve. Decimal

encoding has greater diversity in chromosome and

greater variance of pools generated; float-point

encoding or its combination is more efficient than

binary. Thus, it encode as fixed length vectors for one

or more pools of different types. The fitness function

evaluates how close a solution is to its optimal – after

which they are chosen for reproduction. If solution is

found, function is good; else, is bad and not selected for

crossover. The fitness function is the only part with

knowledge of task. If more solutions are found, the

higher its fitness value.

b. Selection – Good fit individuals close to optimal are

chosen to mate. The larger the number of selected, the

better the chances of yielding fitter individuals. This

continues until one is chosen, from the last two/three

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

14

remaining solutions, to become selected parents to new

offspring. Selection ensures the fittest individuals are

chosen for mating but also allows for less fit individuals

from the pool and the fittest to be selected. A selection

that only mates the fittest is elitist and often leads to

converging at a local optima.

c. Crossover – ensures genes of fitter individuals are

exchanged to yield a new, fitter pool. There are two

crossover types (depends on encoding type used) as: (a)

simple crossover for binary encoded pool via particular-

or multi- point; and all genes are from one parent, and

(b) arithmetic crossover allows new pool to be created

by adding an individual’s percentage to another.

d. Mutation alters chromosomes by changing its genes or

its sequence, to ensure that a new pool converges to

global minima (instead of local optima). Algorithm

stops if optimal is found or after number of runs (though

computationally expensive) if a number of new pools

are created or once no better solution is found. Genes

may change based on probability of mutation rate.

Mutation improves the much needed diversity in

reproduction and its algorithm is as thus:

Mutation Algorithm {}

1. Input: A chromosome rule

2. Output: Mutated solution, a fns of mutation rate

3. Set mutation threshold (between 0 and 1)

4. For each network attribute in chromosome

5. Generate a random number between 0 and 1

6. If random number > mutation threshold then

7. Generate Random value

8. Set solution attribute value with

9. Generated attribute value

10. End if: End For Each

Reynolds (1994) Cultural GA as a variant of GA consists of

belief spaces namely: (a) Normative (has specific range

values which an individual is bound), (b) Domain (data about

task domain), (c) Temporal (data about events’ space is

available), and (d) Spatial (has topographical data). In

addition, an influence function mediates between belief

space and the pool – alter individuals to ensure the pool

conforms to the belief space. CGA is chosen to yield a pool

that does not violate its belief space and reduces number of

possible individuals generated as optimum is found (Heppner

and Grenander, 1990).

Once initialized, ANN computes individual fitness and 30-

individual are selected as the new sub pool via tournament,

to determine mating individuals. Thus, after training,

selected data are moved to the CGA model – with only

crossover and mutation applied, to help the network model

learn dynamic and non-linear feats in the historic, obtained

data.

With GA, only crossover (single point) and mutation is

carried out – and data between 1 and 30 is randomly

generated via Gaussian distribution, corresponding to

crossover points (since prior now, all genes are from a

parent). Now, other parents contribute the rest to yield new

individuals, whose genetic makeup is combination of both

parents. They are then allowed to undergo mutation from

which 3-random genes are selected for another mutation and

are allocated new random values that still conforms to the

belief space. The number of mutation applied depends on

how far CGA is progressed (how fit is the fittest individual in

the pool). Thus, number of mutations equals fitness of the

fittest individual divided by 2. New individuals replace old

ones in pool, with low fitness values (creating a new pool).

This continues until individual with a fitness value of 0 is

found – indicating that the solution has been reached (Ursem

et al, 2002).

Note that initialization and selection via ANN ensures the

first 3-beliefs are met; while mutation ensures the fourth is

met. Also, an influence function helps influence how many

mutations takes place. Knowledge of solution (how close

task is to solution) has direct impact on how algorithm is

processed. Algorithm stops when best individual has a fitness

of 0.

3.4 Model Performance Evaluation
Model performance is evaluated via computed values of

mean square error (MSE), mean absolute error (MAE) and

mean relative error (MRE), coefficient of efficiency (COE)

and coefficient of determination (r2) (Nash and Sutcliffe,

1970):

𝑀𝑆𝐸 = 1
𝑛 {(𝑌𝑝𝑖 − 𝑌𝑖𝑜)2}1/2 (27)

𝑚

𝑖=1

𝑀𝐴𝐸 = 1
𝑛 𝑌𝑝𝑖 − 𝑌𝑖𝑜 (28)

𝑚

𝑖=1

𝑀𝑅𝐸 = 1
𝑛

|𝑌𝑝𝑖 − 𝑌𝑖𝑜|

𝑌𝑖𝑜
 (29)

𝑚

𝑖=1

𝐶𝑂𝐸 = 1 −
(𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2

(𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)2
 (30)

𝑟2 =
[𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠) 𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠)]2

 𝑄𝑜𝑏𝑠 − (1 − 𝑄𝑜𝑏𝑠) 2 𝑄𝑠𝑖𝑚 − (1 − 𝑄𝑠𝑖𝑚) 2
 (31)

4. RESULT PRESENTATION /

DISCUSSION
Performance analysis is as presented below:

Table 1. Model Performance Evaluation

Model MSE MRE MA

E

COE

(R)

COD

(r2)

DFP 0.67 0.91 0.78 0.672 0.650

ANN 0.87 0.79 0.75 0.781 0.966

ANNGSA 0.76 0.81 0.62 0.753 0.921

ANNCGA 0.76 0.77 0.76 0.688 0.812

The result of the models simulation is as thus:

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

15

Table 2. Optmization using stachastic methods and DFP

Optimization Method High Ave. Low

DFP 0.72 0.70 0.72

ANN (TLRN) 0.67 0.60 0.50

ANNGSA 0.56 0.49 0.45

ANNCGA 0.91 0.89 0.72

Table 3. Optimization with DFP as pre-processor

Optimization Method High Ave. Low

ANN (TLRN) 0.87 0.81 0.50

ANNGSA 0.61 0.54 0.54

ANNCGA 0.91 0.89 0.72

The results are as thus:

a. ANNCGA took 21 seconds to find the solution after 98

iterations (at best). ANNCGA was run 15 times (to

eradicate non-biasness), it found optima each time – and

the time varied significantly between 21 seconds and 4

minutes – as its convergence time depends on how close

the initial population is to the solution as well as on

mutation applied to the individuals in the pool.

b. ANNGSA (at best) 18seconds after 321 iterations. GSA

used a gravitational pull and mass update of 282

iterations before finding a solution. It was run 25 times

and solution was found each time on a range between

4seconds and 3minutes. Its convergence time depends

on initialization, gravitational cum mass updates.

c. ANN arrived at solution 32seconds at best after

401iterations. On 25 runs, solution time is between

42seconds and 8minutes – and its convergence depends

on it weight and bias choices.

With a common solution space, fitness function and selection

criteria, weights set between 0.2/0.35, and biases = 0.75

yields a better and faster convergence, before the solutions

are crossed over to CGA, GSA – as supported by Perez and

Marwala (2011), Mandic and Chambers (2001), Meade and

Fernandez (1994) and Ojugo et al (2013a, b). Other values

led to slower and/or non-convergence. The number of nodes

in hidden layer greatly influences a network’s performance.

If it is small, network may not achieve its accuracy. If it is

too many, may result in overtraining.

5. STUDY RATIONALE
Models are educational tools to help compile existing

knowledge about a task. They serve as language to

communicate hypotheses, help us investigate input

parameters crucial in estimation and help us gain better

insight of a task. Thus, model development, sensitivity and

failure analysis helps reflect on theories and functioning of

nature systems. The rationale for the implementation of

hybrids are:

a. Artificial Neural Networks: ANN’s major feat is its

ability to learn to approximate a function – making it a

flexible approximator; while SA is an intelligent search

heuristics for global optimum. The adaptive property of

ANN is a huge merit in modeling dynamic, changing

states.

b. Genetic algorithms: GA was not originally developed

for optimization; But, it offers statistical guarantee of

global convergence to an optimal point. It is best suited

for some problems. It start with an initial random

population, and allocate increasing trials to regions of

the search space found to have high fitness. This is a

disadvantage if the maximum is in a small region,

surrounded on all sides by regions of low fitness. This

kind of function is difficult to optimize by any method,

and here the simplicity of the iterated search usually

wins.

c. DFP Optimize: Many well-behaved continuous

functions have been developed which rely on using data

about the gradient of the function to guide the direction

of search. If the derivative of the function cannot be

computed, because it is discontinuous, for example,

these methods often fail. Such methods are generally

referred to as hill-climbing. They can perform well on

functions with only one peak (unimodal functions). But

on functions with many peaks, (multimodal functions),

they suffer from the problem that the first peak found

will be climbed, and this may not be the highest peak.

Having reached the top of a local maximum, no further

progress can be made.

6. CONCLUSION/

RECOMMENDATIONS
Model’s application as an intellectual or educational tool

requires less accurate numerical agreement between

predictions and observations. Rather, it requires a feedback

mechanism as more important. Models that are

understandable and manageable can be fully explored to help

us better comprehend the process at hand. We thus, sought a

balance between complexity and simplicity (as crucial in

studying the relevant processes of a models and better yet, to

understand the workings of the model). A detailed model

may not be operationally applicable in larger scale, but its

study can help to develop an applicable ones. Very simple

models may not give enough new data whereas complex

ones are not easily understandable. Nonetheless, models

support experts in making estimates about a task.

The study recommends that though the techniques and

models are time-consuming, DFP/BGFS should be adopted

and adapted to act as preprocessor that quickly provide a

good initial solution for models aiming to resolve quadratic

equations as it will in turn, reduce considerably the time

taken as well as improve the quality of the outputted result.

7. REFERENCES
[1] Armijo, S., (1966).Minimization function having

Lipschitz continuous partial derivatives, Pacific Journal

of Mathematics, 16, 1-3.

[2] Barzilar, J and Borwein, J.W.,(1988).Two point step size

gradient methods, IMA Journal of Numerical Analysis,

141-148.

[3] Batruni, R.,(1991). Multilayer network with piecewise-

linear structure and BP-learning, IEEE Transaction on

Neural Networks, 2, 395–403.

[4] Broyden, C.G.,(1967). Quasi newton method and their

application to function approximation, Mathematical

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

16

Computation, 21, 368-381.

[5] Cauchy, A.,(1987). Methode generale pour la

resolution de systems d’equations simultanees,

Computer Rendition of Science Paris, 25, 46-89.

[6] Caudill M.,(1987). Neural Networks Primer, Part I, AI

Expert December, 46-52.

[7] Conway, A. J., Macpherson, K and Brown, J. C.,

(1998). Delayed time series predictions with neural

networks, Journal of Neurocomputing, 18, 81–89.

[8] Dai, Y.H.,(2001). Alternate step gradient method,

Report AMSS-2001-041, Academy of Mathematics and

Systems Science, 32-56.

[9] Dai, Y.H and Yuan, Y.,(2003). Alternate minimization

gradient method, IMA J. of Numerical Analysis, 23,

377

[10] Dai, Y.H and Yuan, Y.,(1999). A nonlinear conjugate

gradient method with strong global convergence

property, SIAM Journal of Optimization, 10, 177-182.

[11] Dai, Y.H., Yuan, J.Y and Yuan, Y.,(2002). Modified

two-point stepsize gradient methods for unconstrained

optimization, Computational Optimization and

Application, 22, 103-109.

[12] Daniel, J.W.(1967). Conjugate gradient method for

linear/nonlinear operator equations, SIAM J. Numeric

Analysis, 4, 10 – 26.

[13] Dennis, J.E and Moore, J.J.,(1974). A characterization

of superlinear convergence and its application to Quasi

Newton methods, Mathematical Computation, 28, 549.

[14] Dennis, J.E and Moore, J.J.,(1977). Quasi Newton

method: motivation and theory, SIAM Rev, 19, 46-89.

[15] Denton, J.W and Hung, M.S.,(1996). A comparison of

nonlinear optimization methods for supervised learning

in multilayer feedforward networks, European J. of

Operation Research, 93, 358-368.

[16] Dixon, L.C.W.,(1972). Variable metric algorithms

necessary and sufficient conditions for identical

behaviour on non-quadratic functions, J. of

Optimization Theory and Application, 10, 34-40.

[17] Fletcher, R.,(1987) Practical methods of optimization,

John Wiley and Sons, Chichester.

[18] Fletcher, R and Reeves, C.,(1964). Function

minimization by conjugate gradients, Computational

Journal, 7, 149

[19] Forsythe, G.E.,(1986). On asymptotic directions of s-

dimension optimum gradient method, Numerische

Mathematik, 11, 57-76.

[20] Friedlander, A., Martinez, J.M., Molina, B and Raydan,

M.,(1999). Gradient method with retards and

generalization, SIAM J. of Numerical analysis, 36, 275-

289.

[21] Ghalambaz, M., Noghrehabadi, A.R., Behrang, M.A.,

Assareh, E., Ghanbarzadeh, A and Hedayat, N.,(2011).

A hybrid gravitational search neural network method to

solve well known Wessinger’s equation, World

Academy of Science, Engineering and Technology, 49,

803.

[22] Gottlieb, D and Orszag, S.A.,(1977). Numerical

analysis of spectral methods: theory and applications,

CBMS-NSF Regional Conference Series in Applied

Mathematics, 26.

[23] Griewank, A and Toini, P.H.,(1982). Local convergence

analysis of partitioned Quasi Newton updates,

Numerical Mathematics, 39, 429-448.

[24] Hager, W and Zhang, H.,(2003). A new conjugate

gradient method wit guaranteed descent and an efficient

line search, SIAM J. of Optimization, 305-333.

[25] Heppner, H and Grenander, U.,(1990). A stochastic

non-linear model for coordinated bird flocks”, In

Krasner, S (Ed.), The ubiquity of chaos (233–238).

Washington: AAAS.

[26] Jang, J.S.,(1993). Adaptive fuzzy inference systems.

IEEE Transactions on Systems, Man and Cybernetics,

23, 665–685.

[27] Khan, J., Zahoor, R and Qureshi, I.R,(2009). Swarm

intelligence for problem of non-linear ordinary

differential equations and its application to well known

Wessinger's equation. European J. Sci. Research, 34(4),

514-525.

[28] Lagris, I.E., Likas, A and Fotiadis, D.I.,(1998).

Artificial neural networks for solving ordinary and

partial differential equation, IEEE Trans. Neural

Network, 9(5), 987

[29] Lee, H and Kang, I.S.,(1990). Neural algorithms for

solving differential equations, Journal of Computational

Physics, 91, 110–131.

[30] Liu, Y and Storey, C.,(1991). Efficient generalized

conjugate gradient algorithms, J. of Optimization

Theory Application, 69, 129-137.

[31] Malek, A and Beidokhti, R.S.,(2006). Numerical

solution for high order differential equations using

hybrid neural network - Optimization method, Applied

Mathematics and Computation, 183, 260-271.

[32] Mandic, D. and Chambers, J.,(2001). Recurrent Neural

Networks for Prediction: Learning Algorithms,

Architectures and Stability, John Wiley andSons: New

York.

[33] Meade, A.J and Fernandez, A.A.,(1994). The numerical

solution of linear ordinary differential equations by

feedforward neural networks, Mathematical and

Computer Modeling, 19(12), 1–25.

[34] Nash, J and Sutcliffe, J., (1970). River flow forecasting

with conceptual models, J. of Hydro. Sci., 10, 282–290.

[35] Ojugo, A.A, (2012a).Artificial neural networks

gravitational search model for rainfall runoff

simulation and modeling, unpublished PhD, Computer

Sci. Department, Ebonyi State University Abakiliki,

Nigeria.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 5 – No.7, July 2016 – www.caeaccess.org

17

[36] Ojugo, A.A., Eboka, A.O., Okonta, E.O., Yoro, R.E and

Aghware, F.O.,(2012b). Genetic algorithm rule-based

intrusion detection system, Journal of Emerging Trends

in Computing and Information Systems, 3(8), 1182 -

1194.

[37] Ojugo, A., and Yoro, R.E., (2013a). Computational

intelligence in stochastic solution for Toroidal Queen,

Progress in Intel Comp. App., 2(1), 46–56.

[38] Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O

and Eboka, A..,(2013b). Hybrid artificial neural

network gravitational search algorithm for rainfall

runoff modeling in Hydrology, Progress Intel. Comp.

App., 2(1), 22

[39] Perez, M and Marwala, T.,(2011). Stochastic

optimization approaches for solving Sudoku, IEEE

Transaction on Evolutionary Computation, 256–279.

[40] Pham, D and Karaboga, D.,(1999). Training Elman and

Jordan networks for system identification using GA,

Artificial Intelligence in Engineering, 13, 107–117.

[41] Pham, D., Koc, E., Ghanbarzadeh, A and Otri,

S.,(2006). Optimization of weights of multi-layered

perceptrons using bee algorithm. Proc. of Intelligent

Manuf. Systems. Sakarya University, Dept of Industrial

Engineering, 38.

[42] Pham, D.T and Liu, X.,(1995). Artificial Neural

Networks for Identification, Prediction and Control,

Springer Verlag, London.

[43] Plumb, A.P., Rowe, R.C., York, P and Brown,

M.,(2005). Optimization of the predictive ability of

artificial neural network models, European J. of

Pharmaceutical Sciences, 25, 395-405.

[44] Polak, E and Ribiere, G.,(1969). Note sur la

convergence de directions conjugees, Rev. Francaise

Informat Researche Operationelle, 3(16), 35-43.

[45] Polyak, B.T.,(1969). The conjugate gradient method in

extreme problems, USSR Computation Mathematics:

Mathematic Physics, 9, 94-112.

[46] Powell, M.J.,(1971). On the convergence of the variable

algorithm D, Winston Mathematics Application, 21.

[47] Powell, M.J.,(1976). Some global convergence

properties of a variable metric algorithm for

minimization without exact line searches, In Cottle,

R.W and Lemke, C.E (eds.), Nonlinear programming,

SIAM Proceedings of AMS, 9, 53-72.

[48] Rashedi, E., Nezamabadi-pour, H and Saryazdi,

S.,(2009). GSA: A Gravitational Search Algorithm,

Information Sciences, 179, 2232–2248.

[49] Rashedi, E., Nezamabadi-pour, H and Saryazdi,

S.,(2009). Filter modeling using gravitational search

algorithm, Energy policy;

doi:10.1016/j.engappai.2010.05.007.

[50] Raydan, M.,(1993). On Barzilai and Borwein choice of

stepsize for the gradient method, IMA Journal Numeric

Analysis, 13, 321-326.

[51] Reynolds, R.,(1994). An introduction to cultural

algorithms, IEEE Transaction on Evolutionary

Programming, 131-139.

[52] Ritter, K.,(1979). Local and superlinear convergence of

a class of variable method, Computing, 23, 287-297

[53] Stachurski, A.,(1981). Superlinear convergence of a

class of variable method, Mathematical Programming,

14, 178-205.

[54] Ursem, R., Krink, T., Jensen, M.and Michalewicz,

Z.,(2002). Analysis and modeling of controls in dynamic

systems. IEEE Transaction on Evolutionary Computing,

6(4), 378-389

