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ABSTRACT  
In this paper, an approach to constructing the set of values of 

the most possible number of fuzzy clusters in a sought 

clustering structure is proposed. The proposed approach is 

based on heuristic possibilistic clustering and fuzzy numbers. 

For the purpose, fuzzy numbers are described and algorithms 

of the heuristic approach to possibilistic clustering are 

considered in brief. A procedure for constructing the set of 

values of the most possible number of fuzzy clusters is 

described for the object data set. An application of the 

proposed technique to the Anderson’s iris data set is provided 

and some concluding remarks are stated. 
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1. INTRODUCTION 
Some notes on fuzzy approach to cluster analysis are 

presented in the first subsection of the section. A cluster 

validity problem is considered in the second subsection. 

1.1 A Note on Fuzzy Clustering  
Clustering is a process aiming at grouping a set of objects into 

classes according to the characteristics of data so that objects 

within a cluster have high mutual similarity while objects in 

different clusters are dissimilar. Fuzzy sets theory, which was 

proposed by Zadeh [1], gives an idea of uncertainty of 

belonging to a cluster, which is described by a membership 

function. Fuzzy clustering methods have been applied 

effectively in image processing, data analysis, symbol 

recognition and modeling. Heuristic methods of fuzzy 

clustering, hierarchical methods of fuzzy clustering and 

optimization methods of fuzzy clustering were proposed by 

different researchers.  

The most widespread approach in fuzzy clustering is the 

optimization approach and the traditional optimization 

methods of fuzzy clustering are based on the concept of fuzzy 

c -partition. Objective function-based fuzzy clustering 

algorithms can in general be divided into two types: object 

versus relational. The object data clustering methods can be 

applied if the objects are represented as points in some 

multidimensional space. The best known optimization 

approach to fuzzy clustering is the method of fuzzy c -means, 

developed by Bezdek [2]. The FCM-algorithm is based on an 

iterative optimization of the fuzzy objective function, which 

takes the form: 
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where liu , cl ,,1 , ni ,,1  is the membership degree, 

ix , },,1{ ni   is the data point, },,{ 1 c   is the set 

fuzzy clusters prototypes and 1  is the weighting 

exponent. Note that the concept of fuzzy c -partition are 

defined by the conditions (2). So, the fuzzy c -partition can be 

arrayed as a )( nc  matrix ][ liuP  . 

The FCM-algorithm is the basis of the family of fuzzy 

clustering algorithms. These objective function-based fuzzy 

clustering algorithms were proposed by different authors and 

they are described by Höppner, Klawonn, Kruse and Runkler 

[3] in detail. 

However, the condition of fuzzy c -partition is very difficult 

from essential positions. So, a possibilistic approach to 

clustering was proposed by Krishnapuram and Keller in [4] 

and developed by other researchers. This approach can be 

considered as a way in the optimization approach in fuzzy 

clustering because major methods of possibilistic clustering 

are objective function-based methods. 

A concept of possibilistic partition is a basis of possibilistic 

clustering methods and membership values li , cl ,,1 , 

ni ,,1  can be interpreted as the values of typicality 

degree. For each object ix  ni ,,1  the grades of 

membership should satisfy the conditions of a possibilistic 

partition: 

0
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


c

l

li , 10  li .                   (3) 

So, the family of fuzzy sets },,1|{)( ncclAX l   is 

the possibilistic partition of the initial set of objects 

},...,{ 1 nxxX   if condition (3) is met.  
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Obviously that the conditions of the possibilistic partition (3) 

are more flexible than the conditions of the fuzzy c -partition 

(2). It is should be noted, that a heuristic approach to 

possibilistic clustering is proposed in [5]. 

1.2 A Cluster Validity Problem  
The most important problem of fuzzy clustering is neither the 

choice of the numerical procedure nor the distance to use but 

concerns the number c  of fuzzy clusters to look for. Really, 

lacking in a priori knowledge of the data structure, there is no 

reason to choose a particular value of c  and one must find a 

way to measure the acceptance with which cluster structure 

has been identified by a clustering procedure. This is the so-

called cluster validity problem. 

The classical approach to cluster validity for fuzzy clustering 

is based on directly evaluating the fuzzy c -partition. 

Measures of cluster validity can be used for the purpose. 

Many authors have proposed several measures of cluster 

validity associated with fuzzy c -partitions. The cluster 

validity problem can be illustrated by the method of fuzzy c -

means. Various cluster validity indexes for the FCM-

algorithm were proposed by different researchers. Among 

other measures proposed in the literature, the following global 

validity measures can be found [3]: 

 Partition coefficient: 
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 Partition entropy: 
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 Compactness and separation index: 
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The number of clusters that minimizes );( cPVPE  and 

);( cPVCS  or maximizes );( cPVPC  is taken as the optimal 

number c  of fuzzy clusters in the sought in the constructing 

fuzzy c -partition P .  

So, for the determination of the numbers of clusters, 

},...,{ 1 nxxX   a following procedure [3] can be applied to 

the data set. An assumption, that some FCM-like clustering 

procedure and some corresponding validity measure 

);( cPV  are taken into account, will be useful for the 

following consideration.  

1. Set min: cc   and ccopt : ; 

2. Run the clustering algorithm with the input );( cX ; 

3. Calculate the value of a validity measure );( cPV ; 

4. The following condition is checked: 

if the value of );( cPV  is better than the value of 

);( optcPV  then ccopt : , 1:  cc  and go to 

step 2 else go to step 5; 

5. The following condition is checked: 

if a condition maxccopt   is met, then go to step 2, 

else go to step 6; 

6. The optimum cluster number is equal optc  and stop. 

Traditionally, a lower bound for the number of clusters minc  

is equal to 2 and an upper bound for the number of clusters 

maxc  is equal to )1( n , where )(Xcardn  . For the large 

data sets, the determination of the actual number of fuzzy 

clusters is computationally very expensive because the 

number of running the clustering procedure is equal to 

)2( n . So, the lower bound for the number of clusters minc  

and the upper bound for the number of clusters maxc  must be 

estimated and the set },,{ maxmin cc   of most possible cluters 

in the sought clustering structure should be constructed. 

The formulated problem can be solved by using the heuristic 

D-AFC-TAGA-algorithm of possibilistic clustering [6] and 

fuzzy numbers. For this purpose, a short consideration of 

heuristic algorithms of possibilistic clustering is presented, 

basic types of fuzzy numbers are considered, the general plan 

of the procedure for constructing the set of values of the most 

possible number of fuzzy clusters is proposed, an illustrative 

example is given and preliminary conclusions are formulated. 

2. A BACKGROUND FOR THE 

PROPOSED APPROACH  
Heuristic algorithms of possibilistic clustering are considered 

in brief in the first subsection of the section. The second 

subsection includes a consideration of basic types of fuzzy 

numbers. Methods of the data preprocessing are described in 

the third subsection of the section. 

2.1 Heuristic Algorithms of Possibilistic 

Clustering: A Survey 
A heuristic approach to possibilistic clustering is proposed in 

[5]. The essence of the heuristic approach to possibilistic 

clustering is that the sought clustering structure of the set of 

observations is formed based directly on the formal definition 

of fuzzy cluster and possibilistic memberships are determined 

also directly from the values of the pairwise similarity of 

observations. A concept of the allotment among fuzzy clusters 

is basic concept of the approach and the allotment among 

fuzzy clusters is a special case of the possibilistic partition (3). 

Direct heuristic algorithms of possibilistic clustering can be 

divided into two types: relational versus prototype-based. A 

fuzzy tolerance relation matrix is a matrix of the initial data 

for the direct heuristic relational algorithms of possibilistic 

clustering and a matrix of attributes is a matrix for the 

prototype-based algorithms. In particular, the group of direct 

relational heuristic algorithms of possibilistic clustering 

includes: 

 the D-AFC(c)-algorithm which is based on the 

construction of an allotment among an a priori given 

number c  of partially separate fuzzy clusters [5]; 
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 the D-PAFC-algorithm which is based on the 

construction of an principal allotment among an 

unknown minimal number of at least c  fully separate 

fuzzy clusters [5]; 

 the D-AFC-PS(c)-algorithm which is based on the 

construction of an allotment among an a priori given 

number c  of partially separate fuzzy clusters in the 

presence of labeled object [5]; 

 the D-AFC(u)-algorithm which is based on the 

construction of an allotment among an a priori unknown 

number c  of partially separate fuzzy clusters with 

respect to the given maximal number of elements in 

every class [7]. 

On the other hand, the family of prototype-based heuristic 

algorithms of possibilistic clustering includes: 

 the D-AFC-TC-algorithm  which is based on the 

construction of an allotment among an a priori unknown 

number c  of fully separate fuzzy clusters [5]; 

 the D-PAFC-TC-algorithm which is based on the 

construction of a principal allotment among an a priori 

unknown minimal number of at least c  fully separate 

fuzzy clusters [5]; 

 the D-AFC-TC(α)-algorithm which is based on the 

construction of an allotment among an a priori unknown 

number c  of fully separate fuzzy clusters with respect to 

the minimal value   of the tolerance threshold [5]; 

 the H-AFC-TC-algorithm which is based on the 

construction of an hierarchy of allotments among an a 

priori unknown number c  of fully separate fuzzy 

clusters [5]. 

It should be noted that these direct prototype-based heuristic 

possibilistic clustering algorithms are based on a transitive 

closure of an initial fuzzy tolerance relation. On the other 

hand, a family of direct prototype-based heuristic possibilistic 

clustering algorithms based on a transitive approximation of a 

fuzzy tolerance is proposed in [6]. The family of clustering 

procedure is based on using the TAGA-algorithm [8]. So, the 

family of prototype-based algorithms includes: 

 the D-AFC-TAGA-algorithm which is based on the 

construction of an allotment among an a priori unknown 

number c  of fully separate fuzzy clusters; 

 the D-PAFC-TAGA-algorithm which is based on the 

construction of a principal allotment among an a priori 

unknown minimal number of at least c  fully separate 

fuzzy clusters; 

 the D-AFC-TAGA(α)-algorithm which is based on the 

construction of an allotment among an a priori unknown 

number c  of fully separate fuzzy clusters with respect to 

the minimal value   of the tolerance threshold. 

All direct prototype-based heuristic possibilistic clustering 

algorithms based on a transitive closure of an initial fuzzy 

tolerance relation are particular versions of corresponding 

prototype-based heuristic possibilistic clustering algorithms 

which based on the calculation of a transitive approximation 

of a fuzzy tolerance.  

2.2 Fuzzy Numbers  
Fuzzy intervals and fuzzy numbers can be considered as a 

special kind of fuzzy sets. Fuzzy numbers are useful tool for 

constructing a possibility distribution in the formulated 

problem which will be considered below.  

Usually, LR -type fuzzy intervals and LR -type fuzzy 

numbers are used to represent fuzzy data. So, the concept of a 

LR -type fuzzy interval and the concept of a LR -type fuzzy 

number must be defined in the first place. These concepts 

were described, for example, in [5] and [9]. 

Let L  or R  be decreasing, shape functions from 
  to 

]1,0[  with 1)0( L  and 0x , 1)( xL , 1x , 

0)( xL ; 0)1( L  or 0)( xL , x  and 0)( L . 

Then a fuzzy set V  is called a LR -type fuzzy interval 

LRbammV ),,,(  with 0a , 0b  if a membership 

function )(xV  of V  is defined as 
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where m  is called the lower mean value of V  and m  is 

called the upper mean value of V . Parameters a  and b  are 

called the left and right spreads, respectively. 

For a LR -type fuzzy interval LRbammV ),,,( , if L  and 

R  are of the form 



 


otherwise

xx
xT

,0
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then V  is called a trapezoidal fuzzy interval. The trapezoidal 

fuzzy interval will be denoted by TIbammV ),,,(  and its 

membership function is defined as follows: 
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Let LRbammV ),,,(  be a LR -type fuzzy interval. If a 

condition mmm   is met, then a LR -type fuzzy interval 

V  is called a LR -type fuzzy number and its membership 

function is defined as  
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where m  is called the mean value of V  and a  and b  are 

called the left and right spreads. A fuzzy number of LR -type 

is denoted by LRbamV ),,( . 

In LR -type fuzzy numbers, the triangular and Gaussian fuzzy 

numbers are most commonly used. In particular, for a LR -

type fuzzy number LRbamV ),,(  if L  and R  are of the 

form 



 


otherwise

xx
xT

,0

10,1
)( ,                (11) 

then V  is called a triangular fuzzy number, denoted by 

TbamV ),,(  and its membership function is defined as 
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Let us consider a definition of the Gaussian fuzzy numbers. If 

 2)/)((exp)()( mxxRxL   for a LR -type fuzzy 

number LRbamV ),,( , then V  is called a Gaussian fuzzy 

number, denoted by GmV ),(  . A membership function of 

a Gaussian fuzzy number GmV ),(   is defined as 
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2.3 A Note on the Data Preprocessing  
Clustering algorithms can in general be divided into two 

types: object and relational. The object data clustering 

methods can be applied if the objects are represented as points 

in some multidimensional space )(1 XI
m

. In other words, the 

data which is composed of n  objects and 1m  attributes is 

denoted as ]ˆ[ˆ 1

1

t

imn xX  , ni ,,1 , 11 ,,1 mt   and the 

data are called sometimes the two-way data [10]. Let 

},...,{ 1 nxxX   is the set of objects. So, the two-way data 

matrix can be represented as follows: 
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So, the two-way data matrix can be represented as 

)ˆ,,ˆ(ˆ 11 m
xxX   using n -dimensional column vectors 1ˆ

t
x , 

11 ,,1 mt  , composed of the elements of the 1t -th column 

of X̂ . 

In the relational approach to fuzzy clustering, the problem of 

the data classification is solved by expressing a relation which 

quantifies either similarity, or dissimilarity, between pairs of 

objects. So, the data matrix taken a form 
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where a general notation ij̂  used for designation of pair wise 

dissimilarities ),( ji xxd  or the similarity coefficients 

),( ji xxr . In general, the values ij̂  are not normalized. 

Relational clustering procedures can be used with the two-

way data (14), by choosing a suitable metric to measure 

similarity. Moreover, heuristic possibilistic relational 

clustering procedures can be used for the three-way data 

processing. The fact was shown in [11], where the 

corresponding dissimilarity measures were proposed. 

In the first place, the two-way data can be normalized as 

follows: 
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In the second place, the two-way data can be normalized 

using a formula 
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So, each object can be considered as a fuzzy set ix , 

ni ,,1  and ]1,0[)( 11 
t

x

t

i xx
i

 , ni ,,1 , 

11 ,,1 mt   are their membership functions. The matrix of 

coefficients of pair wise dissimilarity between objects 

)],([ jiI xxI  , nji ,,1,   can be obtained after 

application of some distance function to the matrix of 

normalized data )]([ 1

1

t

xmn xX
i

 , ni ,,1 , 

11 ,,1 mt  . The most widely used distances for fuzzy sets 

ix , jx , nji ,,1,   in },...,{ 1 nxxX   are: 

 the normalized Hamming distance: 
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 the normalized Euclidean distance: 
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 the squared normalized Euclidean distance: 
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These distances were considered by Kaufmann [12] in detail. 
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The matrix of fuzzy tolerance )],([ jiT xxT  , 

nji ,,1,   can be obtained after application of the 

complement operation  

),(1),( jiIjiT xxxx   , nji ,,1,                (21) 

to the matrix of fuzzy intolerance )],([ jiI xxI  , 

nji ,,1,  .  

The complement operation (21) was also considered in detail 

by Zadeh in [1] and Kaufmann in [12]. 

3. A PROPOSED TECHNIQUE 
A method for constructing triangular and Gaussian fuzzy 

numbers over the initial data set by using the D-AFC-TAGA-

algorithm of possibilistic clustering is considered in the first 

subsection of the section. The second subsection includes a 

consideration of a technique for constructing the set of values 

of most possible number of fuzzy clusters in the sought 

clustering structure.  

3.1 Constructing Fuzzy Numbers through 

Heuristic Possibilistic Clustering 

The allotment )(XRc


 among either an a priori given or an 

unknown number с  of fuzzy clusters and the value of 

tolerance threshold ]1,0(  are principal results of 

classification obtained from all direct heuristic algorithms of 

possibilistic clustering. So, the value с  and the value 

]1,0(  can be used for estimating the lower bound for the 

number of clusters minc  and the upper bound for the number 

of clusters maxc . A method for constructing a triangular fuzzy 

number over the set of elements },...,{ 1 nxxX   of the 

initial data set should be considered in the first place. 

Let },...,{ 1 nxxX   be the initial set of elements and с  is 

the number of fuzzy clusters in the obtained allotment 

)(XRc


. So, a triangular fuzzy number TbamV ),,(  can 

be constructed immediately and its membership function is 

defined by (12), where cm  , nc 1 , 1 ca , 

cnb   and ix  , },,1{ ni  . This situation is 

presented by Fig.1. 

Let us consider a technique for constructing the Gaussian 

fuzzy number over the initial data set. The technique is 

outlined in [13]. For the goal, the triangular fuzzy number 

over the initial data set should be constructed and some 

parameters should be calculated. 

 

 

Fig 1: Constructing the Triangular Fuzzy Number 

Let ]1,0(  is the value of tolerance threshold obtained 

from the D-AFC-TAGA-algorithm application to the data set. 

So, the parameter ĉ  can be defined from the conditions 

)1()ˆ(  cV , 0)1( V ,               (22) 

and the parameter ĉ  can be defined from the conditions 

)1()ˆ(  cV , 0)( nV ,               (23) 

where )(iV , },,1{ ni   is the membership function of 

the triangular fuzzy number TbamV ),,( . A method of 

calculating the parameters ĉ  and ĉ  is illustrated by Fig.2. 

So, the parameters of the Gaussian fuzzy number 

GmV ),(   which is generated from the D-AFC-TAGA-

algorithm results can be calculated as follows.  



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 6 – No.2, November 2016 – www.caeaccess.org 

 

6 

 

Fig 2: Calculating the parameters for constructing the Gaussian fuzzy number 

In general, asymmetric Gaussian membership function )(iV  

of fuzzy number GmV ),(   can be defined as 
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where Lσ  and Rσ  represent the left and right spreads. So, 

values of Lσ  and Rσ  can be defined as 

)1ln(2

ˆ

α

cc
σ L




 ,                (25) 

and  

)α1ln(2

ˆ






cc
R .                (26) 

That is why symmetric Gaussian membership function )(iV  

of fuzzy number GmV ),(   can be defined as 
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where },max{ RL σσσ  . The symmetric Gaussian 

membership function )(iV  of fuzzy number GmV ),(   

is presented in Fig. 3. 

3.2 Constructing the Set of Values of Most 

Possible Number of Fuzzy Clusters 
Triangular or Gaussian fuzzy numbers obtained from the D-

AFC-TAGA-algorithm of possibilistic clustering can be 

useful for constructing the set of values of most possible 

number of fuzzy clusters in the sought clustering structure. 

There is the four-step procedure for constructing the set of 

values.  

1. The matrix of the initial data ]ˆ[ˆ 1

1

t

imn xX  , 

ni ,,1 , 11 ,,1 mt   after the normalizations 

processed by the D-AFC-TAGA-algorithm by 

choosing a suitable distance ),( ji xxd ; the number 

c  of fully separated fuzzy clusters in the obtained 

allotment )(XRc


 and the corresponding value of 

tolerance threshold   are main results of 

classification; 

2. Construct the triangular TbamV ),,(  or 

Gaussian fuzzy number GmV ),(   over the 

initial data set },...,{ 1 nxxX  ; 

3. Construct the fuzzy set )}ˆ(,ˆ{ˆ
ˆ gVg ccV   from the 

triangular or Gaussian fuzzy number V  as follows: 

a subset of integer values }ˆ,,ˆ{ˆ
*

 ccC   where 

2ˆ c  and 1ˆ  nc  should be extracted from 

the continuum ),1( n  and the value of the 

membership degree )ˆ(ˆ gV
c , Сcg

ˆˆ   of the fuzzy 

set V̂  is equal to the membership function value 

)(iV  of corresponding fuzzy number V  in the 

case gci ˆ ; 
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4. Construct the  -level fuzzy set for V̂  as follows: 

 ))ˆ()ˆ(,ˆˆ(ˆ
ˆˆ)(

)ˆ(
gVgVg ccVcV 


  , where 

})ˆ(|ˆˆ{ˆ
ˆ   gVg cCcV  is the  -level of the 

fuzzy set V̂ . 

 

 

Fig 3: Constructing the Gaussian fuzzy number 

Thus, the proposed technique for constructing the set of 

values of most possible number of fuzzy clusters in the sought 

clustering structure can be considered as a simplified version 

of the corresponding technique for a case of the interval-

valued data [5].  

The matter of the proposed technique is illustrated by Fig. 4. 

 

 

Fig 4: Constructing the Set of Values of Most Possible Number of Fuzzy Clusters from the Gaussian Fuzzy Number 
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The set )ˆ(ˆ
)( VSuppV   is the set of values of most 

possible number of fuzzy clusters in some sought clustering 

structure. So, bounds minc  and maxc  for the number of 

clusters c  can be estimated. The membership function 

)ˆ(
)ˆ(̂

gV
c


 can be interpreted as a possibility distribution   

[5] and possibility degrees )ˆ( gс  express the extent to which 

the number Vсg
ˆˆ   of fuzzy clusters is plausible. Values of 

the possibility degrees )ˆ( gс  are denoted in Fig. 4 by ■. 

4. AN ILLUSTRATIVE EXAMPLE 
Let us consider an application of proposed technique to the 

classification problem for the well-known Anderson’s Iris 

data set [14]. The four attribute values represent the sepal 

length, sepal width, petal length and petal width measured for 

150 irises. It has three classes Setosa, Versicolor and 

Virginica, with 50 samples per class.  

The problem is to classify the plants into three subspecies on 

the basis of this information. It is known that two classes 

Versicolor and Virginica have some amount of overlap while 

the class Setosa is linearly separable from the other two. 

The Anderson’s Iris data form the matrix of attributes 

]ˆ[ˆ 1

4150

t

ixX  , 150,,1i , 4,,11 t , where the sepal 

length is denoted by 
1x̂ , sepal width – by 

2x̂ , petal length – 

by 
3x̂  and petal width – by 

4x̂ . The data was preprocessed 

according to the formula (16). 

So, each object can be considered as a fuzzy set ix , 

150,,1i  and ]1,0[)( 11 
t

x

t

i xx
i

 , 150,,1i , 

4,,11 t , are their membership functions.  

 

The distance (19) was applied to the normalized data as the 

parameter for the D-AFC-TAGA-algorithm in experiments. 

In a case of automatic constructing an acceptable transitive 

approximation kT
~

, 6,1k  of the fuzzy tolerance T , the 

result obtained from the D-AFC-TAGA-algorithm is equal to 

the result obtained by using the mean operator. The fact is 

explained by Table 1 where values of the Kuzmin’s distance 

[15] 

}
~

,,
~

{
~

,),(),()
~

,(

61

),(

~

TTT

xxxxTTd

k

xx

jiTjiTk

ji

k



  
,              (28) 

are given.  

Table 1. Values of the distance between fuzzy tolerance 

and its transitive approximations  

A type of the aggregation 

operator 

Values of the distance between 

fuzzy relations 

maximum 3348.760 

minimum 4156.602 

mean 1298.728 

median 1546.668 

upmedian 1577.377 

downmedian 1674.286 

 

So, the condition )
~

,(min k
k

TTd , 6,1k  is met for the 

transitive approximation obtained by using the mean operator. 

The allotment among 2c  fuzzy clusters was obtained for 

the value 80384.0 . The set of values of most possible 

number of fuzzy clusters in the sought clustering structure 

with corresponding possibility degrees obtained using the 

triangular fuzzy number is presented in Fig. 5. 

 

 

Fig 5: Possibility degrees obtained by using the triangular fuzzy number 
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Thus, the set of values of most possible number of fuzzy 

clusters in the sought clustering structure is 

}31,,2{ maxmin  cc  . 
 

On the other hand, the set of values of most possible number 

of fuzzy clusters in the sought clustering structure with 

corresponding possibility degrees obtained by using the 

Gaussian fuzzy number is presented in Fig. 6. 

 

 

Fig 6: Possibility degrees obtained by using the Gaussian fuzzy number 

So, the set of values of most possible number of fuzzy clusters 

in the sought clustering structure is }12,,2{ maxmin  cc 

. 

5. CONCLUDING REMARKS  
The technique for estimation of a lower bound for the number 

of clusters minc  and an upper bound for the number of 

clusters maxc  for the set },,{ maxmin cc   of most possible 

number of fuzzy clusters in the sought clustering structure is 

proposed in the paper. The heuristic D-AFC-TAGA-algorithm 

and fuzzy numbers are a basis of the proposed technique. 

So, a clustering procedure can be applied to the data set for 

estimated set },,{ maxmin cc   of clusters in the sought 

clustering structure. The proposed technique can be simply 

generalized for a case of the relational data set (15) by using 

the heuristic D-PAFC-algorithm of possibilistic clustering [5]. 

Numerical experiments are show, that the proposed technique 

is a useful tool for the exploratory data analysis.  

6. REFERENCES 
[1] Zadeh, L.A. 1965. Fuzzy Sets. Information and Control. 

8, 3, 338-353. 

[2] Bezdek, J.C. 1981. Pattern Recognition with Fuzzy 

Objective Function Algorithms. New York: Plenum 

Press. 

[3] Höppner, F., Klawonn, F., Kruse, R. and Runkler, T. 

1999. Fuzzy Cluster Analysis: Methods for 

Classification, Data Analysis and Image Recognition. 

Chichester: Wiley. 

[4] Krishnapuram, R. and Keller, J.M. 1993. A Possibilistic 

Approach to Clustering. IEEE Transactions on Fuzzy 

Systems. 1, 2, 98-110. 

[5] Viattchenin, D.A. 2013. A Heuristic Approach to 

Possibilistic Clustering: Algorithms and Applications. 

Heidelberg: Springer. 

[6] Viattchenin, D.A. and Damaratski A. 2013. Direct 

Heuristic Algorithms of Possibilistic Clustering Based on 

Transitive Approximation of Fuzzy Tolerance. 

Informatica Economicá. 17, 3, 5-15. 

[7] Viattchenin, D.A., Yaroma, A. and Damaratski, A. 2014. 

A Novel Direct Relational Heuristic Algorithm of 

Possibilistic Clustering. International Journal of 

Computer Applications. 107, 18, 15-21. 

[8] Dawyndt, P., De Meyer, H. and De Baets, B. 2006. 

UPGMA Clustering Revisited: A Weight-Driven 

Approach to Transitive Approximation. International 

Journal of Approximate Reasoning. 42, 3, 174-191. 

[9] Yi, X., Miao, Y., Zhou, J. and Wang, Y. 2016. Some 

Novel Inequalities for Fuzzy Variables of the Variance 

and Its Rational Upper Bounds. Journal of Inequalities 

and Applications. 2016, 41. 

[10] Sato-Ilic, M. and Jain, L.C. 2006. Innovations in Fuzzy 

Clustering: Theory and Applications. Heidelberg: 

Springer. 

[11] Viattchenin, D.A. 2009. An Outline for a Heuristic 

Approach to Possibilistic Clustering of the Three-Way 

Data. Journal of Uncertain Systems. 3, 1, 64-80. 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 6 – No.2, November 2016 – www.caeaccess.org 

 

10 

[12] Kaufmann, A. 1975. Introduction to the Theory of Fuzzy 

Subsets. New York: Academic Press. 

[13] Viattchenin, D.A., Tati, R., and Damaratski, A.V. 2013. 

Designing Gaussian Membership Functions for Fuzzy 

Classifier Generated by Heuristic Possibilistic 

Clustering. Journal of Information and Organizational 

Sciences. 37, 2, 127-139. 

[14] Anderson, E. 1935. The Irises of the Gaspe Peninsula. 

Bulletin of the American Iris Society. 59, 1, 2-5. 

[15] Kuzmin, V.B. 1982. Constructing of Group Decisions in 

Spaces of Crisp and Fuzzy Binary Relations. Moscow: 

Nauka. (in Russian) 

 


