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ABSTRACT 

The accuracy of near-filed source localization is sensitive to 

the precise knowledge of array sensor positions. Therefore, 

numerous efforts have been made to propose robust near-field 

source localization algorithms against array uncertainties. 

This paper presents the findings attained on the study and 

investigation of the effects of sensor position uncertainties to 

the performance of Differential Evolution (DE) algorithm for 

Direction of Arrival (DOA) and range estimation of near field 

sources, impinging on a uniform linear array (ULA). Mean 

square error (MSE) is used as a fitness evaluation function 

because of its single snapshot requirement to convergence and 

accurate performance even in negative SNR. The main 

contribution of this paper is to explore the robustness of DE 

algorithm against sensor position uncertainties for near-field 

source localization. The robustness is tested on the basis of a 

large number of Monte-Carlo simulations and their statistical 

analysis. 
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1. INTRODUCTION 
Source localization from source signal measurements using an 

array of passive sensors is a classic problem. In practice, 

many applications entail source localization, such as radar, 

sonar, wireless communication, sensor networks and speech 

processing [1]. Many approaches have been proposed and 

successfully applied for near-field source localization, such as 

the high-order spectra (HOS) based algorithms, the two-

dimensional (2D) Multiple Signal Classification (MUSIC) 

method, Estimation of Signal Parameters via Rotational 

Invariance Technique (ESPRIT) method, Maximum 

Likelihood (ML) method, the weighted linear prediction 

method and evolutionary techniques like Differential 

Evolution (DE), Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) [2]. In most of the cases, sensor 

positions are assumed to be exactly known [3]. In practical 

scenario, external factors and fabrication accuracy limitations 

induce errors in sensor positions. Using an array with sensor 

position uncertainties degrades the performance and accuracy 

of parameter estimation [4]. Many techniques in literature 

have been applied to source localization problems with array 

uncertainties and inaccurate sensor positions [5-9].  

This paper considers the problem of near field source 

localization when the sensor positions are subject to random 

errors. The main contribution of this work is to find the 

uncertainties in the sensor positions in a uniform linear array 

(ULA) and then localize the near field sources in the presence 

of these sensor position uncertainties. First, the sensor 

position uncertainties are estimated without using any set of 

calibration sources. Then, the DOAs and ranges of near field 

sources are estimated with sensor position uncertainties 

estimated previously.  From the class of evolutionary 

algorithms, DE is taken as the global optimizer for this paper 

because of its competence, effectiveness and ease in 

application. Mean square error (MSE) is used with DE as a 

fitness evaluation function because of its single snapshot 

requirement to convergence and accurate performance even in 

negative SNR. The results of DE are compared with the 

results of PSO to verify the performance. The effectiveness is 

tested on the basis of large number of Monte-Carlo 

simulations and their statistical analysis. 

The rest of the article is structured as follows: section 2 

presents the mathematical data model; section 3 discusses the 

methodology employed. Section 4 is dedicated for numerical 

evaluation and section 5 gives the conclusion and prospective 

plan. 

2. MATHEMATICAL DATA MODEL 
Consider an M element ULA. Sensor at position ‘0’ is taken 

as reference sensor and the spacing between the mth sensor 

and the reference sensor is md+∆dm, m = 1,2,…,M-1 with 

perturbation of ∆dm as shown in Fig.1. Suppose that there are 

K narrow band signals in the near field of ULA. It is assumed 

that the number of sources is known otherwise it can be

  



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 6 – No.3, November 2016 – www.caeaccess.org 

 

2 

Source

0 1 2 M-1

ϴ

 
k

r
k

d+∆d1

2d+∆d2

(M-1)d+∆dM-1  

Figure 1. M element uniform linear array 

obtained by using different methods like Akaike Information 

Theoretic Criteria (AIC) or Minimum Description Length 

(MDL). The DOAs and ranges of incoming signals are ‘ϴk’ 

and ‘rk’ respectively where k = 1,2,…,K. 

It is assumed that K ≤ M. It is also assumed that the incident 

signals and noise are uncorrelated. The angles ‘ϴk’ are 

estimated w.r.t. the reference sensor. Using Fresnel 

approximation for near field sources, the signal received at mth 

sensor can be written as: 
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where 

    
  

 
     

           
                       

with τ0 = 0 

In vector form, 
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where 

                 
  

                                       

                 
  

                                    
 

 

By using the second-order Taylor series expansion and 

neglecting the higher order terms, τmk is approximated as 

follows: 

     
  

 
              

 

 

      
  

          

Thus, the signal received at mth sensor can be re-written as: 

            

 

   

                                  

             ;                (3) 

where 

    
  

 
      

and 

   
 

   
       

for k=1,2,… ,K.          is the steering vector and n is the 

additive white Gaussian noise, added to the sensor outputs. 

Thus, in the presence of array sensor perturbations, the 

problem under consideration is to estimate the unknown 

parameters i.e. the angle of arrival ‘θk’ and the range ‘rk’ of 

sources, for k=1,2,… ,K and the extent of sensor perturbation 

∆dm, from the received data. 

3. METHODOLOGY 
DE [10] is taken as the global optimizer in this paper to solve 

the complex, stochastic, multi-dimension and non-linear 

objective function, because of its competence in optimization, 

simplicity in implementation and fast convergence. The 

procedure is divided into two steps: 1) The sensor position 

uncertainties are estimated without using any set of calibration 

sources. 2) DOAs and ranges of near field sources are 

estimated with sensor position uncertainties estimated in step 

1. 

3.1 Step 1: Sensor Position Uncertainty 

Estimation 
First, DOAs and ranges of near-field sources are estimated in 

the presence of unknown sensor position uncertainties. The 

initial generation of chromosomes is randomly created.  

3.1.1 Initialization 

Suppose that L and H are the lower and upper limits of 

chromosomes respectively. Suppose that the number of 

chromosomes in a generation is ‘C’ and number of genes on 

any chromosome is ‘G’, then 

   
   

                 

                    (4) 

where,  

c = chromosome number for       

   = gene number for        

  = generation number` 

rand ( ) = a random number chosen from 0 to 1 

The chromosome consists of genes in the following order: 

 
   

 

 
 
 
      
  

     
   
 
 
 

 

After creating the initial generation of chromosomes, the 

algorithm checks the fitness of all the chromosomes by using: 

   
   

      

                    (5) 

where, 

   
   

         
   

 
 
 

                    (6) 

is the mean square error and ‘ε’ is a very small positive 

number. 

If the above condition is satisfied, the algorithm stops, 

otherwise it proceeds to the updating stage. 
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3.1.2 Updating  
Update all the chromosomes of the present generation ‘g’ 

from 1 to C. Suppose we pick up cth chromosome     
   

 

a) Mutation:  

Choose three numbers randomly from 1 to C i.e. (c1, c2, c3), 

all different and not equal to c. Then use 

 
     

    
             

       
       

to create an intermediate chromosome. Here, ‘F’ is the scale 

factor (problem dependent) which can be selected from 0.4 to 

1.2 but usually selected as 0.5. 

b) Crossover:  

 
  

     
     

   
     

                                 

   
   

                                                               
        

where, rand ( ) is a number randomly selected from 0 to 1, CR 

(cross-over rate) = 0.5 to 0.9 (generally) and        is chosen 

randomly from 1 to G. 

c) Selection: Select the new chromosome by using the 

following equation i.e. replace the old chromosome with new 

if the fitness is better. 

 
     

     
     

             
     

          
   

 

 
   

                                               
   

3.1.3 Termination 

If 

   
     

      

where, 

   
     

         
     

 
 
 

stop or if the number of generations reached, stop, otherwise 

go back to updating stage. 

These estimated DOAs and ranges are used as calibration 

parameters to estimate the unknown sensor position 

uncertainties. The initial generation of chromosomes is 

randomly created by using eq. (4). The chromosome consists 

of genes in the following order: 

 
   

  
   
 

     

  

After creating the initial generation of chromosomes, the 

algorithm checks the fitness of all the chromosomes by using 

eq. (5). If any of the chromosomes satisfies the condition of 

termination, the algorithm stops. Otherwise, it goes to the 

updating stage. 

3.2 Step 2: DOA and range estimation with 

sensor position uncertainties estimated 

in step 1 
For this step, the sensor position uncertainties estimated in 

step 1 are used for the estimation of DOAs and ranges of near-

field sources. The algorithm steps are same for DOA and 

range estimation as in step 1. The summary of proposed 

methodology is given in Table 1.           

4. NUMERICAL EVALUATION 
In this section, MATLAB simulations are presented to verify 

and discuss the performance of DE algorithm for DOA and 

range estimation of near field sources in the presence of 

sensor position uncertainties. A ULA of 10 passive sensors is 

used. The spacing between two consecutive sensors is taken 

as λ⁄2 (ideally). The number of sources K is assumed to be 

known.  

Table 1. Summary of the proposed methodology 

 

Given A received signal ‘ ’ from eq. 2 and source number 

‘K’. 

Step 1 Estimate DOAs and ranges with unknown sensor 

position uncertainties  

  

 
 
 
      
  

     
   
 
 
 

 

Step 2 Use these estimate DOAs and ranges as calibration 

parameters to estimate the unknown sensor position 

uncertainties. 

  

 
 
 
      
  

     
   
 
 
 

   
      
          

   

 

     

  

Step 3 Use the estimated sensor position uncertainties to 

estimate the DOAs and ranges of near field sources. 

     

   

 

     

    
      
         

 
 
 
      
  

     
   
 
 
 

  

 
Two near-field sources are assumed to impinge on the ULA 

with DOAs (30o, 70o) and ranges (20m, 100m). Wavelength λ 

is taken 2.5m and DE parameters are set as F = 0.4, CR = 0.8 

with 50 chromosomes and 300 generations. Noise is added to 

the sensor outputs and considered as white Gaussian for all 

cases. The results of DE algorithm are compared with the 

results of PSO for DOA and range estimation of near field 

sources in the presence of sensor position uncertainties. The 

results are averaged over 100 Monte-Carlo simulations. 

4.1 4.1 Sensor position uncertainty 

estimation 
For this step, the actual sensor position uncertainties are set as 

depicted in Table 2. The DOAs and ranges are estimated in 

the presence of unknown sensor position uncertainties. Then, 

these DOAs and ranges are used as calibration parameters and 

the unknown sensor position uncertainties are estimated. The 

actual and estimated values of sensor position uncertainties 

are given in Table 2. 

Fig. 2 shows the JRMSE of sensor position uncertainty 

estimation. It can be seen from Fig. 2 that DE can effectively 

and efficiently estimate the position uncertainties in array 

sensors without using any calibration sources, however, as the 

number of sensors with uncertainties increases, JRMSE also 

increases. 
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       Table 2. Sensor position errors 

Sensor 

number 

Ideal 

position 

(m) 

Actual 

position 

(m) 

∆dm 

Actual 

(m) 

∆dm 

Estimated 

(m) 

2 2d 2d + ∆d2 0.07 0.0698 

5 5d 5d + ∆d5 0.06 0.0594 

8 8d 28 + ∆d8 0.08 0.0782 

 

 

Figure 2. JRMSE of position error estimation vs. Number 

of Sensors with error 

4.2 4.2 DOA and range estimation with 

known sensor position uncertainties 

4.2.1 Case 1  
For this case, SNR is set to 10 dB. The sensor position 

uncertainties are taken same as estimated in the previous 

experiment. 

Fig. 3 and Fig. 4 plots the JRMSE of DOA and range 

estimation with different number of sensors with position 

uncertainties. From Fig. 3 and Fig. 4, it can be seen that the 

proposed method can accurately estimate the DOAs and 

ranges of multiple near field sources even when there are 

multiple array sensors with position uncertainties. It can also 

be seen that the accuracy of estimation decreases when more 

array sensors have position uncertainties. 

4.2.2 Case 2  
For this case, SNR is changed from -10 dB to 20 dB. The 
sensor position uncertainties are taken same as estimated in 

the previous experiment. The results of proposed method are 

compared with the results of PSO. The swarm size for PSO is 

taken 110. 

 

 Figure 3. JRMSE of DOA estimation vs. number of 

sensors with error 

 

 Figure 4. JRMSE of range estimation vs. number of 

sensors with error 

 

 Figure 5. JRMSE of DOA estimation vs. SNR 
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Figure 6. JRMSE of Range estimation vs. SNR  

Fig. 5 and Fig. 6 plots the comparison of performances of DE 

and PSO for DOA and range estimation of near field sources 

under two scenarios i) when there are no array sensors with 

position uncertainties, ii) when there are multiple sensors with 

position uncertainties. It can be seen from both figures that the 

proposed method outperforms the method in comparison. The 

proposed method can perform well even in negative SNRs. It 

can also be seen that when SNR is lower than -5 dB, the 

accuracy of DE is effected whereas the error in PSO 

estimation is unacceptable.   

5. CONCLUSION AND PROSPECTIVE 

PLAN 
In this paper, the effects of array sensor position uncertainties 

on near-field source localization for uniform linear arrays 

have been investigated. DE with MSE as a fitness evaluation 

function is used because of its ease in employment and single 

snapshot requirement for convergence. From a large number 

of Monte-Carlo simulations, it has been demonstrated that DE 

works eminently even with sensor position uncertainties in 

terms of robustness to noise and estimation accuracy. The 

proposed algorithm flops when the number of sensors in the 

ULA is less than the number of sources as it becomes an 

underdetermined situation. 

The prospective plan is to extend this methodology to near 

field source localization in the presence of position, gain and 

phase uncertainties. 
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