

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

1

Morphological Analysis of Manipuri Language

Yumnam Bablu
Assam University
Computer Science

Ch. Yashawanta
Manipur University

Linguistics Department

 Nameirakpam Amit
Manipur University

Linguistics Department

ABSTRACT

Morphological analysis forms the basic foundation in NLP

applications including syntax parsing Machine Translation

(MT), Information Retrieval (IR) and automatic indexing in

all languages. It is the field of the linguistics; it can provide

valuable information for computer based linguistics task such

as lemmatization and studies of internal structure of the

words. Computational Morphology is the application of

morphological rules in the field of computational linguistics,

and it is the emerging area in AI, which studies the structure

of words, are formed by combining smaller units of linguistics

information, called morphemes: the building blocks of words.

Morphological analysis provides about semantic and syntactic

role in a sentence. It analyzes the Manipuri word forms and

produces several grammatical information associated with the

words. The Morphological Analyzer for Manipuri has been

tested on 3500 Manipuri words in Shakti Standard format

(SSF) using Meitei Mayek as source; thereby an accuracy of

80% has been obtained on a manual check.

General Terms

Machine Translation, NLP, Morphological Analysis.

Keywords

Manipuri; Meitei Mayek; Computational Morphology,

Information Retrieval, SSF

1. INTRODUCTION
The first step in natural language processing is to identify

words in a sentence. The process is called morphological

analysis. The Manipuri Morphological Analyzer is built using

the methodology of finite-state compilers and algorithms, and

the results are stored and run as finite-state transducers.

Manipuri language also known as Meiteilon or Meiteiron

belongs to the Kuki-Chin [1] branch of the Tibeto Burman

language, sub-family of Sino Tibetan Language. Manipuri

language is an official language as well as a Lingua franca

among the various speech communities [2]. Manipuri has

been adopted as the medium of instruction and examination

from the primary to the high school stage. It has been the state

language of Manipur since the 8thcentury A.D. Manipuri

language has been recognized as the 8thscheduled language in

the Indian Constitution since 1992[3]. Short Taxonomy of

Manipuri word formation

Figure 1: Word Formation in Manipuri.

Morphology consists of two branches: inflectional

morphology and derivational morphology. Inflectional

morphology is the study of those processes of word formation

where various inflectional forms are formed from the existing

stems [4].

Examples1:

Plurals: boroI–>boroIsiQ

Aspect: chai –>chaari,

Derivational morphology is the study of those processes of the

word formation where new words are formed from the

existing stems through the addition of morphemes. The

meaning of the resultant new word is different from the

original word and it often belongs to a different syntactic

category [4]. Examples:

• Adjective to verb: acAb –>cAb

• Adjective to adjective: acAb –>acAbgI

• Noun to adjective: cArIb –>acAb

2. PROBLEM STATEMENT
About the problem statement we will list four main objective

questions as follows:

a. What are morphological categories in Manipuri

Language?

b. What are computational morphological process in

agglutinative language like Manipuri?

c. What are rules involved in morphological process?

d. What is the computational model for Morphological

analysis in Manipuri Language?

e. What is the best approach for computational

Morphological analysis?

3. OBJECTIVES OF MAM ANALYSIS
Manipuri being agglutinative language is highly inflectional

language, which have the capability of generating more then

thousands of words from a single root. Hence morphological

analysis is vital for high-level applications to understand

various words or lexeme in our language. So morphological

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

2

analysis of Manipuri language forms the foundation for

applications related with NLP. Agglutinative languages show

high morpheme per word or head word ratio and have

complex morphotactics structures, the absence of fusion at

affix boundaries make the task of segmentation fluent once

the architecture or the model for implementation of

morphotactics is build. Here we are listing our main

objectives of MAM analysis:

a. To identify the morphological categories of

Manipuri Language.

b. To identify the number of prefix, Suffix as per

category wise.

c. To identify the morphological categories in

Manipuri Language.

d. To identify the computational process in

agglutinative language, Manipuri.

e. To identify the rules of MAM in Manipuri

Language.

f. To identify the best approached for MAM.

4. METHODOLOGY
The process goes in four modules i.e.

1. Data collection.

2. Classification.

3. Analysis.

4. Implementation.

As a data collection process we start making paradigm table in

category wise of word classification.

a. Lexical category (lcat) has all these possible values like:

1. Noun (singular/plural) = n

2. Verb = v

3. Adjective = adj

4. Adverb = adv

5. Pronoun = pn

6. Nlocative = nst

7. Avya = avy

8. Postposition = psp

9. Number = num

10. Ordinal =ord

11. Punctuation =punc

12. Unknown =unkn

b. The possible values for Gender: m, f, n , mf , mn , fn,

any .

c. The possibles values for Number: sg, pl, dual, any.

d. The possible values for Preson : 1, 2, 3, any.

e. The possible values for Case : d(direct),o(oblique)

f. The possible case marker: dir, obl, ki , ku, ni , nu, lo, wo,

yoVkkaetc ...

g. The possible feature structre for the word which is

unknown to morph is <fsaf='word,unkn,,,,,,'>

h. The possible feature structre for the punctation mark

which is unknown to morph is

<fsaf='⋅,punc,,,,,,'>for \. .

i. The possible feature structure of the number is

<fsaf='88,num,,,,,,'>

j. The possible values for case name: ex: nom, acc, dubi,

etc or 1, 2, 3

This file is read by morph in compiler mode during paradigm-

data input.

5. MORPHOLOGICAL ANALYZER
Morphological analyzers perform morphological analysis.

There are some important approaches for executing

morphological analysis. But the two approaches, which are

used widely, are:

a. Finite state machines based approach 

b. Machine learning approach

a. Finite State Machines Based Approach

Section describes the Finite state machines approach used for

building Finite State Transducers (FST) based morphological

analyzers.

Resources

The main goal of this approach is to list all the possible

parses/analyses of an input word. In order to build a

morphological parser using an FST based approach, the

following resources are used in general:

1. Lexicons

Lexicon of a language is its vocabulary or the list of all words

in Manipuri or particular languages. It is an explicit list of

every word of the language. It is cumbersome to list every

word in a language. Hence generally computational lexicons

are used for this purpose. The Finite-state automaton (FSA) is

generally used to model lexicons. A structured collection of

the entire morpheme i.e. the root or headwords and

morphemes or affixes of the words are collected [5].

Table 1. Lexicon Table

Sl.no. Lexicon Numbers

1 Headwords 13463

2 Noun Suffix 37

3 Pronoun Suffix 39

4 Numerals 32

5 Verb Suffix 100

6 Adverb Suffix 23

7 Adjective Suffix 31

8 Prefix 9

2. Morphotactics

This explains the morpheme ordering ex: the plural morpheme

follows the main noun morpheme. Example: cars = car + N +

pl.   3) Orthographic rules: these rules are also known as

spelling rules. They model changes when two morphemes

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

3

combine. Example: fox + plural s = foxes. Here the e-insertion

rule is applied.

The number of paradigms per PARADIGM-INPUT-FILE is

limited to one. More than one paradigm definitions in the

same file will lead to the particular file being rejected by

morph for having improper no of word forms.

Table 2. Paradigm Table of Noun

əhum (root) Category Suffix

əhum num+nom -n

əhum-n-di num+nom+spec -n-di

- - -

- - -

əhum-du-gi-di num+det+ben+spec -du-gi-di

Table 3. Paradigm Table of Pronoun

mədu (root) Category Suffix

mədu-n pro-pl+nom -n

mədu-gi-di Pro-pl+Gen+Spec -gi-di

- - -

- - -

mədu-si-n-di Pro-

pl+det+Conts+Spec

-si-n-di

TABLE 4. PARADIGM TABLE OF VERB

KNn (root) Category Suffix

KNn-ri verb+dur -ri

KNn -gni verb+future -gni

- - -

- - -

KNn -gL-li

verb+ habitual+asp -gL-li

TABLE 5. PARADIGM TABLE OF ADJECTIVE

yamdrbə (root) Category Suffix

yamdrbə-si-n adj+det+nom -si-n

yamdrbə-si-n-di adj+Det+nom+spec -si-n-di

- - -

- - -

yamdrbə-du-bu-n adj+dt+acc+conts -du-bu-n

TABLE 6. PARADIGM TABLE OF NUMBER

əmə (root) Category Suffix

əmə-si-n num+det+nom -si-n

əmə-du-n num+Det+nom -du-n

- - -

- - -

əmə-du-n-di num+det+conts+spec -du-n-di

Table 7. Paradigm Table of ordinal

məŋasubə(root) Category Suffix

məŋasubə-si-n num+Det+nom -du-n

məŋasubə-si-n-di num+det+nom+spec -si-n-di

- - -

- - -

məŋasubə-si-dgi-n num+det+abl+conts -si-dgi-n

Paradigm table are used to morphological database. These

data are useful as a linguistics source to improve the Manipuri

language. Morphological Analysis using Finite State

Transducers in Manipuri language is given below as FST for

lexicon formation of Manipuri words from one root.

Figure 2: Formation of Lexicon from one root in more

then 280 (might be more) words

Flow Chart of Morph will show the overview of the program

control from one module to the other. It shows the decision

points in the program

Figure 3: Flow Chart for MAM

DFD diagram showing how data are flow in MAM.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

4

Figure 4: Zero Level DFD.

Data flow in another way:

Figure 5: Zero Level DFD

Figure 6: First Level DFD

Here the Figure 7 shown below DFDs is represented as per

the programming concept. How data flows was shown from

LEVEL 0 to 3

Figure 7: Second Level DFD

Figure 8: Architecture of MAM

6. MORPHOLOGICAL ANALYSIS
In Morphological analysis we take words and we try to

identify the suffix or prefix, and check weather this suffix is a

valid suffix. If this suffix is present in the word-list then it is a

vialed if not it’s an unknown word for Morphological

Analyzer. If the suffix is valid then check weather the stem is

valid or not just, by converting it to root word, by adding and

deleting is done. If the suffix and root words are valid then

take the line number of the word in word-list then get the

feature structure (like gnp, tam, case, case marker value). Add

root word and feature structure to API- wrapper to print in the

data tree.

This program is use as pre-processing module before

tokenizer

binmode(STDIN, ":utf8");

binmode(STDOUT, ":utf8");

while($line=<>)

{

 utf8::decode($line);

$line =~ s/\x{2018}/'/g; # <2018> ‘ is Replaced by single

quote "'"

$line=~s/\x{2019}/'/g; # <2019> ’ is Replaced by single quote

"'"

$line=~s/\x{201C}/"/g; # <201C> “ is Replaced by single

quote "

$line=~s/\x{201D}/"/g; # <201D> ” is Replaced by single

quote "

$line=~s/\x{200D}//g; # <200D> is Removed

$line=~s/\x{200C}//g; # <200C> is Removed

$line=~s/\x{feff}//g; # <feff> is Removed

$line=~s/\x{0D}//g; #

is Removed

 print $line;

}

Figure 9: Process of MAM

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

5

A Manipuri Morphology compiler is a program, which

compiles and analyses words belonging to a Manipuri

language (Meiteilon). It works in Manipuri language using

Meitei Mayek; hence it can learn and recognize words from

Manipuri language, which are written in Meitei script. Morph

has two modes of operation, via the COMPILER mode and

the ANALYSER mode. In the COMPILER mode it reads

information about the words of a language from paradigm-

input files and lexicon-data files and stores the processed

information. This process is referred to as "compilation of

data". Once this has been done Morph can recognize the

words, which were present in the data. All the data need not

be compiled in one go, fresh data can be fed to morph any

time by running it in compiler mode. To recognize words one

has to run morph in its second mode of operation, which is the

ANALYSER mode.

It will recognize only those Manipuri words, which it has

been "taught"i.e. trained data. It outputs all the descriptions of

the given word it has read during compiler mode. It produces

a diagnostic "Unknown word <given word>" to say that it

does not find the word in its list. Compilation Manipuri data is

done by running morph in compiler mode. While "compiling

morph" means putting the morph source code through the C-

compiler, which may be necessary especially to customize

morph program to some specific need. Compilation of morph

is not connected with "data compilation" or "compilation of

data" in any manner. At times changes may demand

recompilation of full data, while for some changes only

recompilation of morph may suffice, and for some changes

both may be called for.

Input- output Specifications:

 Input: TKN

 Output: Morphological Analysis

Input specifications
It require that property TKN_ must be defined in the input

SSF that is given to the Morphological Analysis

 ADD TKN CAT

 1 rAmA <UNDEF>

 2 sIwA <UNDEF>

Output specifications: required that Morphological Analyzer

as given below would define property of attribute feature. So

the output SSF must contain Feature structures to all the valid

values.

Input specifications require that property TKN_ must be

defined in the input SSF that is given to the Morphological

Analyzer.

Output specifications required that Morphological Analyzer

as given below would define property of attribute feature. So

the output SSF must contain Feature structures to all the valid

values.

Output:

An output SSF from Morph must contain all the

four columns of SSF.

The first column will have ADDR

The second column will have TKN

The third column will have CAT as UNDEF

The fourth column will have the feature structure, fs

The feature structure will be in the form of either

abbreviated features, of and/or attribute-value pairs.

If it has two feature structures then separate them

with “ | ” character and between each column there

is a tab that separates the fields.

The possible values of fs is listed below,

NOUNS:

A noun is analysed as root+suff+{features(such as gender,

number,...)}.

The complete structure is presented below.

<fs af root = “Root of the word”, lcat = “Lexical category of

the root”, gend =“Gender of the word”, num = “Number

coressponding to the word form”, pers = “Person of the

word”, case = “Case (Direct / Oblique)”, vibh = “(cm / tam)”

case_name= “case name”, spec= “Specificity Marker”, emph

=“Emphatic Marker”, dubi = “Dubitative Marker”, interj =

“Interjection Marker” conj = “Conjunction Marker” hon

=”Honorific Marker” agr_gen =”Gender of the agreeing

noun” agr_num =”Number of the agreeing noun” agr_per

=”Person of the agreeing noun” suff =”Form of suffix

representing all the above markers”>

VERBS:

The verb analysis structure is presented below.

<fsaf root = “Root of the word”, lcat = “Lexical category of

the root”, tam =”Suffix indicating Tense Aspect Modality”,

gend = “Gender of the word”, num = “Number corresponding

to the word form”, pers = “Person of the word”, spec =

“Specificity Marker”, emph = “Emphatic Marker”, dubi =

“Dubitative Marker”, interj = “Interjection Marker”, conj =

“Conjunction Marker”hon = “Honorific Marker”, neg =

“verb-neg Marker”, voice = “Voice”, caus = “Whether the

verb form is causative or not(y/n)” finiteness = “Whether the

verb form is finite or not (y/n)”, suff = “Suff representing all

the above markers”>

ADJECTIVES:

The feature structure for Adjectives is as follows:

<fsaf root = “Root”,lcat = “Lexical category”,gend = “Gender

of the word”,num = “Number”,pers = “Person of the word”,

degree= “degree”,-like = “like”, dubi = “Dubitative”,interr =

“Interrogative”, emph = “Emphatic”, conj = “Conjunction

Marker”, ?spec = “Specific”, suff = “complete suffix”>

ADVERBS:

The feature structuer for Adverbs is presented below.

<fs af root= “Root of the word”, lcat= “Lexical category of

the root”, dubi= “Dubitative Marker”, interr= “Interrogative”,

emph= “Emphatic Marker” conj= “Conjunction Marker”,

?spec= “Specific”, suff= “complete suffix”>

NOUN LOCATIVE:

The complete structure is presented below.

<fs af root = “Root of the word”, lcat = “Lexical category of

the root”, gend =“Gender of the word”, num = “Number

coressponding to the word form”, pers = “Person of the

word”, case = “Case (Direct / Oblique)”, vibh = “(cm /

tam)”, spec = “Specificity Marker”, emph = “Emphatic

Marker”, dubi = “Dubitative Marker”, nterj = “Interjection

Marker”, conj = “Conjunction Marker”, case_name= “case

name”, hon = “Honorific Marker”, agr_gen = “Gender of the

agreeing noun”, agr_num = “Number of the agreeing noun”,

agr_per = “Person of the agreeing noun”, suff = “Form of

suffix representing all the above markers”>

NUMBER :

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 6 – No.8, March 2017 – www.caeaccess.org

6

A Numeral is analysed as root+suff+{features(such as gender,

number,...)}.

The complete structure is presented below.

<fs af root = “numer”, lcat =”num” gend =“”, num =“”, pers

=“”, case =“”, vibh =“”, suff =“” >

PUNCTUATION :

A Punctuation is not analysed just give the NCR.

The complete structure is presented below.

<fs af root = “NCR” lcat =”punc” gend =“” num =“” pers =“”

case =“” vibh =“” suff =“” >

UNKNOWN :

A Unknown is not analysed and it is just repeatd.

The complete structure is presented below.

<fs af root = “word”, lcat =”unk”, gend =“”, num =“”, pers

=“” case =“”, vibh =“”, suff =“”>

7. IMPLEMENTATION
The code is separated to into parts (subroutines) like –

command line parsing, program initialization, error handling

and logging, and the main application. All the

function/subroutines have been defined in the defn.h, struct.h

struct1.h files. It would be better if,

- Functions/subroutines are defined in the separate program

files, .cpp file.

- In the main program they must be called as subroutines

When a new paradigm file is added, or in an existing .p file #

of lines is changed:

a. p file should be placed in pc_data sub dir.

b. Relevant info regarding the category, features & its

values should be entered in Ca, Ce & Fe files in test

area.Program to convert Meitei Mayek to WX mapping.

The given Perl programs will convert Meitei layout to wx

mapping.

while ($line=<>){

 $line=~s/k([^AeiouO])/ka$1/g;

 $line=~s/s([^AeiouO])/sa$1/g;

 $line=~s/l([^AeiouO])/la$1/g;

 $line=~s/m([^AeiouO])/ma$1/g;

 $line=~s/p([^AeiouO])/pa$1/g;

 $line=~s/n([^AeiouO])/na$1/g;

 $line=~s/c([^AeiouO])/ca$1/g;

 $line=~s/t([^AeiouO])/ta$1/g;

 $line=~s/K([^AeiouO])/Ka$1/g;

 $line=~s/q([^AeiouO])/fa$1/g;

 $line=~s/q/f/g;

 $line=~s/T([^AeiouO])/wa$1/g;

 $line=~s/T/w/g;

 $line=~s/w([^AeiouO])/va$1/g;

 $line=~s/w/v/g;

 $line=~s/y([^AeiouO])/ya$1/g;

 $line=~s/h([^AeiouO])/ha$1/g;

 $line=~s/P([^AeiouO])/Pa$1/g;

 #$line=~s/a([^AeiouO])/aa$1/g;

 $line=~s/g([^AeiouO])/ga$1/g;

 $line=~s/J([^AeiouO])/Ja$1/g;

 $line=~s/r([^AeiouO])/ra$1/g;

 $line=~s/b([^AeiouO])/ba$1/g;

 $line=~s/j([^AeiouO])/ja$1/g;

 $line=~s/G([^AeiouO])/Ga$1/g;

 $line=~s/D([^AeiouO])/Xa$1/g;

8. CONCLUSION & FUTURE WORKS
In the present work, the development of a Manipuri

Morphological Analysis has been described. The root

dictionary stores the related information of the corresponding

roots. The Analyzer can classify the word classes and

sentence types based on the affix information. The verbs are

under bound category. The verb morphology is more complex

than those others. The distinction between the noun class and

verb classes is relatively clear; the distinction between nouns

and adjectives is often vague. Thus, the assumption made for

word categories depend upon the root category and affix

information. In the stripping of the morphemes the various

morphemes pattern combinations are tested.

The Natural Language Processing tools need more text corpus

with better transfer rules and techniques to achieve quality

output. The performance of the various Manipuri NLP tools

that have been developed in the present work need to be

improved by experimenting with various machine-learning

approaches with more training data. Future works include the

developments of automatic Morphological Analyzer using

some machine learning algorithms. The exploration and

identification of additional linguistics factors that can be

incorporated into the Morphological Analysis to improve the

performance is an important future task.

9. ACKNOWLEDGMENTS
We thanks to Shallow Parser Tools of Indian Language

(SPTIL), DIT, Project Consortium Leader Prof. G. Uma

Maheswar Rao and the teams. And Indian Language Corpora

Initiative (ILCI), DIT project PI, Girish Nath Jha.

10. REFERENCES
[1] Grieson, 1973. Linguistics Survey of India,Vol III part

III.

[2] Ch.Yashawanta Singh. 2000. Manipuri Grammar. Rajesh

Publications, New Delhi.

[3] Sarangi, A. (2009). Language and Politics in India. (P:

27). New   Delhi, Oxford University Press

[4] Nikhil, K., Abhilash, I. and Sharma, D. M. Hindi

Derivational Morphological Analyzer. In Proceedings of

SIGMORPHON, 2012.

[5] Web enabled Multilingual Manipuri Dictionary,

Yumnam Bablu Singh.

[6] Aksher Bharathi, Rajeev Sangal, et.al, ”Natural

Language Processing: A Paninian Perspective”.

