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ABSTRACT 
A dominating set D of a jump graph J(G) is a non split 

dominating set of a jump graph if the induced sub graph < 

E(J(G)) – D> is connected  the non split domination √ns  J(G) 

is minimum cardinality of a non-split dominating set. In this 

paper many bound of   √ns J(G) are obtained and its exact 

values of some standard graphs are found. Also its 

relationship with other parameters are investigated. 
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1. INTRODUCTION 
The graph considered here are finite, undirected, non trivial 

and connected without loops and multiple edges. 

A set D  V(J(G)) is a dominating set of jump graph. If every 

vertex not in D is adjacent to a vertex D. The domination 

number of the jump graph J(G). 

The dominating set D  V(J(G)) is called a connected 

dominating set of a jump graph is the induced sub graph <D> 

is connected . The minimum cardinality of the connected 

dominating set in J(G) is its dominating number denoted by 

 √c (J(G)). 

A dominating set D of a jump graph J(G)= ( v(J(G) ,  E(JG) ) 

is a split dominating set if the induced sub graph  V(J(G)) – D 

disconnected. The split dominating number √s (J(G)) of J(G) 

is the minimum cardinality of a split dominating set. 

The reader is referred to [1] [2] [3] and [4]for survey or results 

on domination.  

Any undefined terms in this paper may be found in Harary[5] 

unless staed, the graph has p vertices and  q edges. 

The purpose of this paper is to introduce the concept of Non 

split domination. 

A dominating set D of a graph J(G) is a nonsplit dominating 

set. If the induced sub graph v(J(G)) – D is connected. The 

non split domination number  √ns(J(G)) of J(G) is the 

minimum cardinality of a non split dominating set. 

We call a set of vertices on √-setmif it is a dominating set with 

cardinality √(J(G)) similar  a √c – set, a √s- set and  a √ns-set 

are defined. 

2. RESULTS 
We start with some elementary results. Since their proofs are 

trivial we omit the same. 

Theorem 2.1: For any graph G 

   √(J(G))   √ns (J(G)) 

Theorem 2.2. For any graph G 

√(J(G)) = min { √s(J(G)) , √ns(J(G)) } 

In [3] Cockayne and Hedetniemi gave necessary and 

sufficient conditions for a minimal dominating set. 

Theorem A: A dominating set D of a graph G is minimal if 

and only if  for each vertex v   D one of the following 

condition is satisfy  

(i) if there exists a vertex u   V – D such that N[u]   D = {v} 

and  

(ii) v is an isolated vertex in < D > 

Theorem 2.3: A non split dominating set D of J(G) is 

minimal if and only if for each vertex v in D one of the 

following  conditions is satisfied. 

(i) If there exists a vertex  u   V(J(G)) – D such that 

N[u]   D={v}. 

(ii)  v is an isolated vertex  in < D > and  

(iii) N(v)   ( V(J(G)) – D ) =   

Proof:  Suppose D is minimal. On the contrary, if there exists 

a vertex v  D such that v does not satisfy any of the given 

conditions then by Theorem A D’= D – {v} is a dominating 

set of J(G) and by (iii) ( v(J(G)) – D’ is connected. This 

implies that D’ is a non split dominating set of J(G), a 

contradiction This  proves the necessity sufficiency is straight 

forward. 

Next we observe a relationship  between √ns(J(G)) and 

√ns(J(H)) where J(H) is any  spanning sub graph of J(G) we 

omit the proof 

Theorem 2.4. For any spanning sub graph J(H) of J(G) 

√ns(J(G))  ≤  √ns(J(H)). 

We obtain lower and upper bounds on  √ns(J(G)) respectively. 

Theorem 2.5 For any graph J(G) 

√ns(J(G))  ≥ 
        

 
   

Proof: Let D be a √ns(J(G))-set of J(G) Since  

 ( v(J(G) – D ) is connected. 

q ≥  |   (J(G)) – D | + | V(J(G)) – D | - 1  

This proves the result.. 

Theorem 2.6.   For any graph  G 

√ns(J(G)) ≤ p – W(J(G)) is the Clique number of G. 

Proof: Let S be a set of vertices of J(G) such that  < S > is 

complete with |S|= w(j(g)) Then for any  

u   S (V(J(G)) – S )   {u} is a non split dominating set of G. 

Then the result holds. 
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Now we list the exact values of √ns(J(G)) for some standard 

graphs.. 

Proposition 2.7. 

(i) For any complete graph Kp with  p ≥2 vertices 

√ns(J(Kp)) = 1. 

(ii) For any complete bipartite graph  Km ,n with  2 

≤ m ≤ n  √ns(J(Km ,n )  =  2 

(iii) For any  cycle  cp √ns(J(Cp)) =  p-2 

(iv) For any wheel Wp  √ns(J(Wp) ) = 1 

(v) For any  path Pp with p≥3 vertices √ns(J(Pp)) = 

p – 2 

(vi) Our next result sharpens the inequality of 

Theorem 2.6 for tree. 

Theorem  2.8. If  T is a Tree which is not a star , then  

√ns(J(T)) ≤ p – 2. 

Proof: Since, t is not a star, there exists two adjacent cut 

vertices u and v with deg u, deg v ≥2 This implies that v 

(J(G)) – { u,v} is a non split dominating set of J(T). 

Thus the result holds. 

Theorem 2.9. if k(J(G)) ≥ β0(J(G)) then 

√ns(J(G)) = √(J(G)) where k(J(G)) is the connectivity of jump 

graph J(G) and  β0(J(G)) is the independence number of J(G). 

Proof:  Let D be the √-set of jump graph J(G). Since  k(J(G))  

> β0(J(G)) ≥ √(J(G)). It implies that < V(J(G)) – D > is 

connected. This proves that D is a √ns-set of J(G). 

Hence the result. 

Theorem 2.10.: Let d be a  √ns-set of a connected graph G If 

no two vertices in V(J(G)) – D are adjacent to a commom 

vertex in D then  

√ns(J(G)) +   (J(T)) ≥ p where    (J(T)) is the maximum 

number of end vertices in any spanning tree J(T) of J(G).. 

Proof: Let D be a√ns-set of J(G), given in the hypothesis. 

Since  for any two vertices u, v   V(J(G)) – D there exists two 

vertices u1+  v1   D such that u1 is adjacent to u but not v and 

v1 is adjacent to a vertex v but not u1 . This implies  that  there 

exists a spanning tree J(T) of  < V(J(G)) – D > in which each 

vertex of V(G) – D is adjacent to a vertex of D. 

This proved that    (J(T)) ≥ | V(J(G)) – D |. 

Hence the result holds. 

Theorem 2.11.: If δ (J(G)) +   (J(G)) ≥ p +1 then 

√c (J(G)) + √ns (J(G)) ≤ p   where  

.δ(J(G)) is the minimum degree of J(G). 

Proof: By theorem 2.6  √ns(J(G)) ≤ p –   (J(G)) + 1≤ δ (J(G)) 

Let d be a √ns- set of jump graph J(G). Then every ertex in D 

is adjacent to some vertex in V(J(G)) – D Thus  <. V(J(G)) – 

D  > is a connected dominating set of J(G). Since < V(J(G)) – 

D > is connected . 

 Hence  √c (J(G)) + √ns (J(G)) ≤ p 

 Theorem 2.12: For any  tree  

√ns(J(T)) ≥ p – m. where m is the number of vertices adjacent 

to vertices. 

Proof:  If J(T) is K2, the result is trivial. If J(T) has at least 

three vertices and D is a √ns-set of J(T), then each vertex of 

V(J(G)) – D is a cut vertices of J(T). Let S be the set of all cut 

vertices which are adjacent to end vertices with |S|= m let u   

V(J(G)) – D. If u   S then D = V(J(G)) – S and inequality 

holds. If u   S, then there exists a cut vrtex v   D adjacent to 

u. Further all vertices which are connected to v not through u 

also belonging to D This implies that V(J(G)) – D has at most 

m vertices and inequality holds. 
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