

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

1

Performance Evaluation of Native and Hybrid Android

Applications

Olusola Olajide Ajayi
Department of Computer Science, Faculty of

Science, Adekunle Ajasin University,
Akungba Akoko, Ondo State, Nigeria

Ayokunle Abiodun Omotayo
Department of Computer Science, Faculty of

Science, Adekunle Ajasin University,
Akungba Akoko, Ondo State, Nigeria

Adebola Okunola Orogun
Department of Computer Science, Faculty of

Science, Adekunle Ajasin University,
Akungba Akoko, Ondo State, Nigeria

Taiwo Gabriel Omomule
Department of Computer Science, Faculty of

Science, Adekunle Ajasin University,
Akungba Akoko, Ondo State, Nigeria

Segun Michael Orimoloye
Department of Computer Science, Faculty of Science

Adekunle Ajasin University,
Akungba Akoko, Ondo State, Nigeria

ABSTRACT
Android has become most popular and powerful embedded

operating system. Nowadays, it is used in other electronic items

other than mobile phones like TV, Camera, etc. The purpose of

this study is to find out the difference in performance between

the different methods for developing applications due to an

increasing market for platform independent applications. In this

research work, we present our current findings concerning

performance efficiency in cross-platform and native mobile

applications (apps) and how they can contribute to a general

benchmarking approach. At first, several test cases for

evaluating performance of mobile applications are described

with which two applications where built to implement a

mathematical calculation for both native and hybrid

respectively. This is used as benchmark because of the recursive

nature and memory usage of both applications for CPU and

memory usage. Then, the performance efficiency of native and

hybrid apps is compared on a mobile device. The results show

that hybrid applications still suffer performance issues in

comparison to native apps. The performance deviations and

reasons for them are discussed and evaluated. It is concluded

that the performance of mobile applications is crucial to user

experience and satisfaction.

Keywords

Android, Platform, Performance, Benchmarking, Native,

Hybrid, CPU, Mobile, Deviation, Evaluation

1. INTRODUCTION
Mobile communication is so integrated into our lives that many

people feel uncomfortable without a cell phone. Once upon a

time, the most popular functions of phones were calling and

sending texts. A smart phone is a multifunctional device that not

only communicates, but helps to learn, earn, and have fun. This

is made possible by the development of mobile applications.

Mobile applications dated back to the end of the twentieth

century. Typically, they were small arcade games, ring tone

editors, calculators, calendars, and so forth. The beginning of

the new millennium saw a rapid market evolution of mobile

content and applications.

Development for the mobile application market has drastically

increased in size and magnitude therefore the requirements for

developing applications has changed along with the market

(Dan, 2015). According to Andersson et al (2015), hybrid

application is one of the three main development paradigms

along with native development and HTML5. Hybrid

applications featured a single code-base, bridging the different

platforms as opposed to the native applications. HTML5 shares

the platform independence with hybrid applications; however it

lacks the ability to communicate with the low level Application

Programming Interface (API). The three development

paradigms differ in performance, development resources and

user interface. Due to performance limitations of mobile

devices, the performance is a major factor for the selection of

development method. The technology for developing mobile

applications is evolving rapidly and that makes the performance

to evolve along with it.

2. STATEMENT OF PROBLEM
No doubt, researches had been tremendously done on mobile

platform performance, preciously on android due to high market

share of Android devices at the time of the study and the

availability of developer tools. 90% of work done centered on

the area of performance (connectivity, data storage etc.) with the

consideration of 4.1 (Jelly Bean) as the version of android used.

After much research on the existing work, statistical based

approach were used for the performance metrics.

Ghada et al (2015) revealed that new metrics can be proposed

and empirical result analysis can be used in the mobile

application performance metrics. However, application used on

the existing work are not tested in terms of CPU usage and app

load time, and the maximum version of the android platform

used was 4.1 (JellyBean) as earlier stated. This study therefore

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

2

carries out its evaluation with a higher version of the platform

(e.g. Lollipop, KitKat). KitKat is considered for the

implementation of the application to be used.

3. OBJECTIVE
The specific objectives of the research are as follows: to explore

the limitation of the mobile android development frameworks

(i.e. hybrid and native); to express and analyze the App load

time, memory usage and CPU performance of android

platforms; to analysis the hybrid app efficiency performance as

an important factor for software application quality.

4. METHODOLOGY
This research first classified general approaches to cross-

platform development of mobile applications. We then analysed

and compared existing cross-platform solutions based on Web

technologies like HTML, CSS, and JavaScript. As these differ

in their general architecture and their capabilities, it is not

obvious which to prefer. We outlined criteria that are important

when making a decision as well as evaluate the popular

approaches mobile Web apps, PhoneGap and Titanium Mobile

according to these criteria.

The first concepts defined in the evaluation process are the

system under test (SUT) and the component under study (CUS).

The SUT in this case is the display, in the mobile device, of web

pages hosted by a local server. This, SUT includes the device,

the host, the webserver, etc. The CUS is an Android

implementation of an internet browser that receives an address

in the web, searches the page on the server and displays it on the

mobile device screen. The CUS is the focus of the evaluation.

The following aspects were used for the performance

assessment of the application: CPU time, memory footprint,

battery usage, communication demand, and the total execution

time of the application for displaying web pages (hybrid). Data

related to each aspect would be collected during the execution

of the application in the target platforms.

The work tried to reduce the influence of external factors in the

measured data by controlling as much as possible the

experimental setup. Still, some variables are beyond control. For

instance, one cannot control embedded Android processes such

as garbage collector or other internal processes of the operating

system.

5. RELATED LITERATURES
Ghada et al (2013): “evaluates the performance Study of

Hybrid Mobile Applications Compared to Native Applications

using android platform, and titanium framework”. Statistical-

based approach (created and tested by using a Prime number

program to evaluate the general performance difference. From

the results, it is clear that Titanium has an advantage over

Android in terms of execution time in the prime number

benchmark. Only seven simple test applications were developed

to evaluate the performance of low-level API functions and

general performance.

Dalmasso et al (2014): “comparison and evaluation of cross

platform mobile application development tools”. The authors

measured and evaluated the tools needed for hybrid application.

The article provides several criteria other than just portability

and performance, for example user experience, development

cost and ease of updating. The cross-platform tools studied in

the article are PhoneGap, PhoneGap & JQuery mobile,

PhoneGap & Sencha Touch 2.0 and Titanium. The section about

performance evaluation in the article features two subcategories

being memory usage, CPU usage.

Methodology: Statistical-based approach.

Solution: Conclusions are that cross-platform development

tools have lower costs and quicker time to market at the cost of

user experience. Out of the evaluated platforms PhoneGap uses

the least amount resources but has a very simple user

experience.

Limitation: The empirical study was limited to evaluation of

hybrid application only, leaving the other approaches e.g.

Native, Web. Also the system does not give an analysis of user

interface.

Dan et al (2015): “evaluates the performance Study of Hybrid

Mobile Applications Compared to Native Applications using

android platform, and titanium framework”. The authors

evaluated the performance difference between native and hybrid

applications when accessing the device native hardware through

the low level API. This study evaluates the performance and

ability to access the device low-level API in An-droid and

Titanium, in context of this study performance will be defined

by execution time, disk storage space and memory usage.

Methodology: Statistical-based approach (The general

benchmark was created and tested by using a Prime number

program to evaluate the general performance difference between

Android and Titanium. A prime number program was created to

find the all prime number within 100 000 numbers. The bench-

mark was created identically between Android and Titanium to

get as accurate data as possible.).

Solution: From the results, it is clear that Titanium has an

advantage over Android in terms of execution time in the prime

number benchmark, the reason for this advantage is that the

functions used from the math library in the prime number

benchmark are more efficient in Titanium than Android, this

was concluded by breaking the prime number benchmark down

into smaller pieces e.g. loop and math functions benchmarks.

Limitation: Simple test applications were developed to evaluate

the performance of low-level API functions and general

performance.

6. RESEARCH FRAMEWORK AND

DESIGN
Research framework is a collection of things to ask and things

to observe in particular contexts, along with contextually

appropriate techniques for doing so. It also includes processes

for integrating research/data from other practices areas as well

as specific methodologies for making meaning of the raw

research.

A thorough testing was carried out on performance of android

mobile application (native and hybrid application) and hence the

research came up with the framework shown below:

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

3

CHECK TEST REPORT
SOURCE UPDATE, BUILD

APP

DEVELOPER

DEVELOPMENT

SOURCE COMMIT

CREATE AND RUN TEST

GENERATE REPORT

RECORD TEST

KEYS

 CUT - Component Under Study

 SUT – System Under Study

Fig. 1 Contextual representation of the proposed model for performance testing

This model shows the general flow chart. A flow which depicts the process involved in implementing and testing the actual component

needed.

Fig. 2 Process flow of the android mobile performance testing

Fig. 3 General flow chart for the proposed performance testing of hybrid and native android app

START

Select S.U.T (Hybrid/Native)

select C.U.S

Application

change

Reconsider the

performance

CPU time

Memory Usage

App load time

Is each testing

5 times?

END

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

4

Fig. 4 Prototype Screen for first interface in both Native and hybrid app

Fig. 5 Prototype Screen for Fibonacci number Application using native and hybrid approach as CPU benchmark

Fig. 6 Prototype Screen for Merge sort Application using native and hybrid approach as Memory usage benchmark

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

5

6.1 Data Presentation
Table 1Data for Response time Performance Measurement on both App

System type
Test 1 Test 2 Test 3 TEST 4 Test 5

Average

Time

Native 201 200 200 200 200 200.2

Hybrid 2000.12 2001.34 2000.10 2002.42 2000.27 2000.85

Table 2 Data for CPU performance measurement on both app

Time
SUT Test 1 Test 2 Test 3 Test 4 Test 5

Average

Time Value

50
Native 1 1 1 0 1 0.8

Hybrid 78.526 60.132 50.330 46.181 40.015 55.0

100
Native 1 1 1 1 1 1.0

Hybrid 59.118 58.478 44.073 43.283 42.962 49.6

300
Native 3 2 2 2 2 2.2

Hybrid 66.608 58.420 54.136 50.308 50.112 55.9

400
Native 4 4 3 3 3 3.4

Hybrid 54.646 51.044 49.212 47.993 41.972 49.0

500
Native 5 4 3 3 2 3.4

Hybrid 84.142 54.314 45.744 41.809 39.319 53.1

1000
Native 6 6 5 5 3 5.0

Hybrid 61.674 60.880 58.964 45.211 41.285 53.6

1500
Native 7 6 5 4 3 5.0

Hybrid 86.256 62.378 52.227 50.887 49.747 60.3

Table 3 Data for Memory Access performance measurement on native and hybrid app

Time
SUT Test 1 Test 2 Test 3 Test 4 Test 5

Average

Time Value

100
Native 0 0 0 1 0 0.2

Hybrid 20.23 19.10 18.01 18.48 16.87 18.538

150
Native 2 1 1 1 1 1.2

Hybrid 37.34 36.11 35.29 34.23 33.34 35.262

200
Native 5 6 7 6 5 5.8

Hybrid 47.12 46.21 44.43 44.25 43.16 45.034

250
Native 26 29 28 27 26 27.2

Hybrid 56.20 54.10 54.29 53.40 52.13 54.024

300
Native 49 49 48 47 46 47.8

Hybrid 75.48 76.45 74.23 74.32 73.67 74.83

400
Native 62 65 66 65 64 64.4

Hybrid 108.36 108.34 107.23 104.25 102.82 106.2

500
Native 117 116 106 107 102 109.6

Hybrid 209.10 206.26 207.18 205.47 204.46 206.494

Table 4 Data for CPU performance measurement on both app

Time
SUT Test 1 Test 2 Test 3 Test 4 Test 5

Average

Time Value

10
Native 0 0 0 1 0 0.2

Hybrid 3.80 3.02 3.60 3.04 1.87 3.1

15
Native 1 1 1 1 1 1.0

Hybrid 4.65 4.71 4.52 4.30 2.86 4.2

20
Native 1 1 1 1 2 1.2

Hybrid 8.73 8.18 8.13 7.98 7.91 8.2

25
Native 14 7 7 6 6 8.0

Hybrid 43.34 38.72 38.70 38.43 23.48 36.5

30
Native 67 58 58 57 54 58.8

Hybrid 284.03 278.47 270.70 260.40 242.31 267.2

35
Native 586 580 580 577 578 580.2

Hybrid 2643.61 2635.98 2608.58 2551.37 2533.77 2594.7

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

6

6.2 EVALUATION RESULT
6.2.1 Response time
Results: The outcome of the first test case reveals that, while

the native application is nearly immediately loaded, the hybrid

counterpart is significantly slower by a factor of around 20 (see

table 1.0). With a startup time of more than two seconds

The hybrid app shows a remarkable delay, which is noticeable

when run. In an app, which contains real content, this additional

loading time may negatively influence a user’s satisfaction.

When analyzing the start-up process further, it becomes clear

that the native shell, which wraps hybrid apps, takes up a

majority of the time span followed by the UI toolkit's loading

time. During this time, the internal Cordova server is started,

which refers JavaScript calls to their native counterparts.

Fig. 7 Start-up time comparison of native (Android) and hybrid (jQuery) apps

6.2.2 Integer Calculation
Results: A Graph showing timed performance in milliseconds

the implementation of the Armstrong Number calculation test.

An integer calculation test performed on hybrid and native

shows that the java implementation is about 6 times faster than

the hybrid implementation, which could work as an indication

for this particular test, namely that Native implementation is

faster on Android. However, since the test device (Tecno 7c)

has a dual-core Cortex-A7 CPU, it is likely to believe that there

are significant performance differences between any other test

devices that might be used, with Tecno 7c being much faster,

since it uses dedicated hardware for calculation. This means that

Native implementation will probably be faster than hybrid, at

least on Tecno 7c.

Armstrong Integer is used as a benchmark for the CPU time

performance measurement due to the loop nature required to get

the right output, where this loop only depends on how fast the

App can relate with the processor of the device used to make the

process as quick as possible.

Fig. 8: A graph showing timed performance in milliseconds for each Platform and implementation of the Armstrong

Calculation test. The plots are estimated from 7 measured data of different input parameters.

6.2.3 Recursive
Results: A graph showing timed performance in milliseconds

the implementation of the Fibonacci number calculation test.

This test will produce lots of method calls. Informal sources

state that method calls in Java are basically free, where one of

the arguments consists of smart compilers that will inline

automatically. Inline boosts performance by in lining the code

0

1000

2000

3000

Native Hybrid

0

10

20

30

40

50

60

70

50 100 300 400 500 1000 1500

T
im

e
in

 M
il

li
se

co
n

d
s

Input

Hybrid App

Native App

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

7

instead of making a method call. In recursion however, this is

not a possibility due to the constant method calls that results in

an immense amount of code to inline. Native is still expected to

hold strong against hybrid.

The results are presented in the figures below.

Fig. 9: A graph showing timed performance in milliseconds for each platform and implementation of the Recursion test.

The plots are estimated from 7 measured data of different input parameters

6.2.4 Memory Access
Results: A graph showing timed performance in milliseconds

the implementation of the Memory Access test.

The authors implemented a module in simple application to

check whether there was something overshadowing the changes

arising from performance evaluation based on memory usage.

This was evaluated by a Quicksort implementation using no

specific Android library. Resulting measurements for memory

usage can be seen in Fig. 10. The graph shows the variation of

the data in sequential executions. One can observe a very large

variation in the measurement between the two applications

executions of the Quicksort app.

Fig. 10: A Graph showing timed Performance in Milliseconds for each Platform and Implementation of the Memory Access

Test. the plots are Estimated from 7 Measured Data of different Input Parameters.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

10 15 20 25 30 35

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Input

Native App

Hybrid App

0

50

100

150

200

250

100 150 200 250 300 400 500

Ti
m

e
in

 M
ill

is
e

co
n

d
s

Input

Native App

Hybrid App

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

8

Memory Access is a benchmark where the difference between

JQuery and native code is expected to be the most. Sources

indicate that memory access in hybrid is one of its bottlenecks

partly due to bound checks. Benchmarks show results of huge

difference in performance. A performance expectation of the

native implementation is therefore high compared to the hybrid

implementation.

7. CONCLUSION
The goal of this research is to evaluate the performance of

android hybrid and native mobile applications and to explore the

limitation of the mobile android development frameworks. The

research was conducted by selecting the SUT and CUS (System

under study and Component under study). The work then

performed a computation and record the time taken, which is

later visualized with a graph.

In Integer calculation there is slight difference between the

performances of the platform, both the app showed no much

different in results. In Integer calculation not much difference

was seen in the time of Native implementation and Hybrid

implementation. Using recursion showed remarkable

differences between the performance of native and hybrid. As

the input grows the difference increases on both platforms.

Merge sort results showed not much difference in the native and

hybrid implementation.

Hybrid apps were analyzed in terms of performance efficiency,

which is an important factor for the software quality of apps. In

all the conducted tests, native apps were superior to hybrid apps.

Since performance is considered crucial for user experience,

low performance is likely to influence a user’s satisfaction and

rating of the app.

8. RECOMMENDATION
Despite this, companies should focus on their clients who

expect a satisfying performance, which is more likely to be

achieved with the native approach. Some cases cannot yet be

covered sufficiently in terms of responsiveness using hybrid

approaches. Although web technologies and hybrid frameworks

are progressing steadily, native development prevails, at least

for consumer-facing apps. While many papers have already

covered performance efficiency of hybrid mobile apps, there is

still no clear statement of which approach to choose for a certain

project.

8.1 FUTURE WORK
Undoubtedly, the world is driven towards a mobile view, so

there is need for us to thoroughly test the developed app for

better performance.

This research as at when conducted was done using three (3)

components (CPU usage, Memory usage and App load time). It

is recommended that further researches explore the addition of

battery consumption to the stated components.

This research was conducted based on android 5.0 (Lollipop)

platform and device with 1GB RAM, it is also suggested that an

upgraded device architecture (e.g. with android 6.0 -

Machshallow) with internal storage of 2GB for better evaluation

and conclusion be used.

This evaluation was strictly based on performance metrics only,

but work can still be done by evaluating Functional/UI Testing,

and Interruption Testing.

Since conclusion as being drawn from this research work that

hybrid is slower compare to native application, much work can

still be done to further improve on this framework by evaluating

the reason(s)/cause(s) of the delay of hybrid application.

9. REFERENCES
[1] Adobe PhoneGap (2013a). PhoneGap Documentation

Overview. [Online] Available at:

http://docs.phonegap.com/en/2.9.0/guide_overview_index.

m d.html#Overview [Accessed 04 January 2016].

[2] Charland, A. and LeRoux, B. (2011). Mobile Application

Development: Web vs. Native. In Communications of the

ACM, Vol. 54, 5, pp. 49-53.

[3] Dan B. and Robin A. (2015). “A Performance Study of

Hybrid Mobile Applications Compared to Native

Applications”. DEGREE PROJECT Computer Engineering

Bachelor level G2E, 15 hec Department of Engineering

Science, University West, Sweden

[4] Dalmasso, I.., Soumya K.D, Christian, B. and Navid, N.

(2013). “Survey, Comparison and Evaluation of Cross

Platform Mobile Application Development Tools. Wireless

Communications and Mobile Computing Conference

(IWCMC), 2013 9th International, ISSN 2376-

[5] E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P.

Subiaco (2012). Mobile apps development: A framework

for technology decision making; in Proceedings of

International Conference on Mobile Computing,

Applications, and Services, ser. MobiCASE’4, pp. 64–79.

[6] G. Lim, C. Min, Y.I Eom (2013). “Enhancing Application

Performance by Memory Partitioning in Android

Platforms”. IEEE International Conference on Consumer

Electronics (ICCE), 2013. pp 11-12.

[7] Heitkötter, H. Hanschke, S., and Majchrzak, T. (2012).

Comparing Cross-Platform Development Approaches For

Mobile Applications. Lecture Notes in Business

Information Processing, vol. 140, pp. 120-138.

[8] Hyeon-Ju Y., (2012). “A Study on the Performance of

Android Platform,” International Journal on Computer

Science and Engineering (IJCSE), Vol. 4, No. 4, 2012, pp.

532-537.

[9] IBM. (2015, May 17). Native, web or hybrid mobile-app

development [Online] Available FTP:

ftp://public.dhe.ibm.com/software/pdf/mobileenterprise/W

SW14182USEN.pdf

[10] IBM Software. (2014). require technical skills for mobile

application development. Retrieved from

http://www.computerworld.com.au/whitepaper/371126/

[11] Intel. (2015, May 17) Implementing a Cross-Platform

Enterprise Mobile Application Framework [Online]

Available

http://www.intel.com/content/dam/www/public/us/en/docu

ments/bestpractices/implementing-a-cross-platform-

enterprise-mobile-application-frameworkpaper.pdf 6492.

pp 45-49.

[12] Kan, S. (2002). Metrics and models in software quality

engineering (2nd ed.). Addison-Wesley. Schiller, J. (2000).

Mobile communications. Addison-Wesley. pp 230.

[13] Ketan A., Priya C., (2016) “Native Vs. Hybrid Apps”

International Journal of Current Trends in Engineering &

Research (IJCTER) e-ISSN 2455–1392 Volume 2 Issue 6,

June 2016 pp. 563 – 572.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 16, May 2018 – www.caeaccess.org

9

[14] N. Lee, S. Lim (2011). “A Whole Layer Performance

Analysis Method for Android Platforms,” 9th IEEE

Symposium on Embedded Systems for Real-Time

Multimedia (ESTIMedia). pp 1

[15] Peter, S. (2013). Quantitative indicators of a successful

mobile application; Retrieved from

http://th4.ilovetranslator.com/rrS-PZXXNfD=d/ [Accessed

04 January 2016].

[16] Ruti, G. (2008). Framework for Quality Metrics in Mobile-

Wireless Information Systems. Interdisciplinary Journal of

Information, Knowledge, and Management. Volume 3,

2008. pp 23-38.

[17] Ryan, C. and Rossi, P. (2005). “Software, performance and

resource utilisation metrics for

context-aware mobile applications” in Software Metrics,

2005. 11th IEEE International

Symposium. 2005 © IEEE. doi:

10.1109/METRICS.2005.44.

[18] Salma, C., Zakaria A., and El-Habib, B. (2014). "Cross

platform mobile development approaches", Information

Science and Technology (CIST) 2014 Third IEEE

International Colloquium in, pp. 188-191, 2014, ISSN

2327-1884.

