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ABSTRACT 

Let J(G) be a co-connected jump graph. A set D   V(J(G)-D  

is a set dominating set (sd-set) if for every S   V(J(G)-D 

there exists a non empty set  T   D such that the sub graph (S 

  T) is connected. Further D is a global set dominating set, if 

D is an sd-set of both J(G) and J(   ). The set domination 

number √s and the global set domination number √sg of J(G) 

are defined as expected 
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1. INTRODUCTION 

Theorem 1 
For the tree of order p with e end vertices √sg(J(G)) = p-e 

Theorem 2 
If diam J(G) = 3 then √sgJ(G) ≤ √s(J(G)) +2 

If diam J(G)) = 4 then  √sgJ(G) ≤ √s(J(G)) + 1 

If diam J(G) ≥ 5 then √sgJ(G) ≤ √s(J(G))  

Let J(G) = (V,E) be a jump graph. A set   D   V(J(G) is a 

dominating set of J(G) if every vertex not in D is adjacent to 

some vertex in D. Further d is a global dominating set of J(G), 

if D is a dominating set of both J(G) and J(   )  . The 

domination number √(J(G)) of J(G) is defined similarly the 

concept of global domination was first introduced by 

sampathkumar [4] and was also studied by Rall [3] Recently 

the concept of set domination for a connected graph was 

introduced by  Sampath kumar and L. pushpa latha[ 5]. A set 

D  V(J(G) is an set-dominating set (sd-set)of every set S   

V(J(G))-D, there existd a non empty set  T   D such that the 

sub graph < S   T > induced by  S   Tis connected. The set-

dominating number √sJ(G) = √sg(J(G)) of jump graph J(G) is 

the minimum cardinality of an sd-set. Suppose J(G) is co- 

connected graph ( i.e, both J(G) and J(   ) are connected). The 

global set domination number √sg=√sg(J(G)) of J(G) is the 

minimum cardinality of an sd-set of both J(G) and J(   ). The 

purpose of this paper is to initiate a study of √sg. 

Hence forth we consider only co-connected graph J(G). for a 

vertex v   J(G). let N(v)= { u : uv   E} and N[v] = N(v)   

{v]. Also 

 √s = √sg(J(G))  . 

Since every global sd-set is a global dominating set and √s ≥ 2 

we have 2 ≤ √s ≤ √sg                 ….(1) 

We observe that for a path pn on n ≥4 vertices  √sg(J(Pn)) =n-2 

and for a cycle cn on  n≥ 6 vertices √sg(J(Cn)) = n-3 when √-

sg(J(C5)) = 3. 

A   √s-set is minimum sd-set similarly we define   √sg-set etc.,   

one can easily determine √sg for a tree. 

Theorem 1. In a  jump tree J(T) with p vertices and e end 

vertices that is not a star the set of non-end vertices form a 

minimum global sd-set and √sg J(T) =p-e. 

Proof: It is known that the set d of all cut vertices of T form 

a √s-set of T and √s = p – e   [5]   Clearly  the sub graph 

V(J(T))-D in  J(  ) is complete. Since J(T) ≠ K1,m in  J(  ) each 

vertex in V(J(T)) – D is adjacent to some vertex in D this 

implies that D is an sd-set of J(T) also and √sg = p – e 

We now determine some bounds for √sg. 

Theorem 2. Let J(G) be a co-connected sub graph of 

order  p ≥ 4 then 

 2 ≤ √sg(J(G)) ≤ p – 2            ………(2) 

Proof: let u and v be   adjacent vertices of degree at least 

two (such vertices clearly exist) Then V(J(G)) – {u, v} is a 

global sd-set of J(G) so √sg(J(G)) ≤ p – 2. 

The bounds in (2) are sharp. The upper bounds attained by 

paths of length at least 3 and the 5-cycle All jump graphs for 

which the lower bound is attained can be determined. 

 Theorem 3: For a jump graph J(G) of order p. √sg=2 if 

and only if  

diam J(G) = diam (J(  )) = 3 and either J(G) or J(  ) has a 

bridge which is not an end edge. 

Proof; Assume √sg = 2 since diam J(G) ≤ 3 and diam(J(   )) 
≤ 3 Now, let D= {u,v} a √sg-set of J(G) suppose u and v are 

adjacent in J(G).All vertices in V(J(G))-D are adjacent to 

either u or v (but not both). If all such vertices are adjacent to 

only u (or v)  G and    is disconnected. Hence some vertices of 

V(J(G)- D are adjacent to u and some are adjacent to v. If all  

x   N(v)- {u}, hen x and y are not adjacent in J(G),for 

otherwise 

 {u, v} will not be an sd-set in J(G). Thus uv is a bridge in 

J(G) that is not an end edge and d(x, y)=3=diam J(G) Also in 

J(   ), d(u, v)=3 and hence diam  J(   ) = 3 

Conversely, if J(G) has a bridge uv and is not an end edge and 

 diam J(G)= diam(J(   )) = 3, then every vertex in J(G)is 

adjacent to u or to v and hence {u, v} is a √s-set in J(G). let 

NG(u) be the set of all neighbors’ of u  in J(G), then NG(u)= 

NG[v] since uv is a bridge in J(G), every vertex of  NG(u) – 

{v} is adjacent to every vertex of  NG(u){u} in 

 J(   ). Hence {u, v} is an sd-set of J(   ) and  √sg(J(G)) = 2. 

Theorem 4;  Let J(G) be a jump graph with cut vertices. 

Then  

√sg(J(G)) ≤√s(J(G)) +1 = √c(J(G))+1 
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Proof: We consider two cases 

Case1. There exists a √s-set D of J(G) all of whose vertices 

belong to a single block B of J(G). 

 Consider a vertex u  D such that u is a block  B1≠  

B let D’ =D  {u} we now show hat D’ is an sd-set of J(G) let 

u, w   V(J(G)). If v ,w belongs to a single block Bi ≠ B1 of 

J(G) then they are both adjacent to u in 

 J(   ) . If u and w are in B1 then in J(   ) both of them are 

adjacent  to a vertex u1   D   (B – B1) (note that √s≥ 2) If v   

B1 and w   B1 then  

in J(   ) v is adjacent to u1, and w is adjacent to u. Further the 

sub graph < { u, v,w,u1}> is connected in J(G). This proves 

D’ is an sd-set of J(G) and     

√sg (J(G)) ≤  |D’| ≤ √s(J(G)) + 1. 

Case 2. Case 1 is not true. 

In this caswe for every √s-set D of J(G) at least two vertices of 

D belong to different blocks of J(G) one can easily show tha d 

is also an sd-set of J J(   ). Hence  √sg(J(G) ) =  √s(J(G)( = 

√c(J(G)) 

Theorem 5. Le J(G) be a jump graph having diameter 

atleastfive and let D   V(J(G). Then D is a minimal sd-set of 

J(G) if and only if D is a minimal global  sd-set of J(G). 

Proof; Suppose D is  minimal global sd-set of J(G). let u 

and v be such that d(u,v)≥5. Then D N[u] ≠ɸ and  D N[v] 

≠ɸ. Let u1   D N[u]  and 

 v1   D N[v] . Since d(u, v) ≥ 5 u1 and v1 are non adjacent in 

J(G) and hence they are adjacent in J(G). Also no vertex in 

V(G)- { u1, v1 } is adjacent to both u1 and v1 in J(G) ssince 

otherwise d(u, v)┘≤ 5 

Now in J(   ), each vertex is adjacent to u1 or v1(or both) and 

hence {u1, v1} is a connected dominating set of  J(   ),Since 

every connected dominating set is an sd-set {u1, v1} is an sd-

set of J(   ),. This proves that D is an minimal global sd-set of 

J(G). 

Conversly, If D is a minimal global sd-set of J(G) and is noy a 

minimal sd-set of J(G), then there exists  x  D such that D- 

{x} is also an sd-set of J(G). As before, if v1   { D –{x}}  

N[u] and v1   { D –{x}}  N[v] 

Then {u1,v1} is an sd-set of J(G) and hence D – {x] is a global 

sd-set of J(G) a contradiction Hence D is also a minimal sd-

set of J(G). 

2. CONCLUSION 
In this paper we studied some characterization of some graphs 

by global set domination. It can used for further research work 

on set domination theory. 
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