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ABSTRACT 

The Cuckoo Search Algorithm is a recently developed nature 

inspired meta heuristic algorithm, which is established on the 

breeding behavior of Cuckoo species. Cuckoo search can be 

applied on a large variety of optimization problems. The main 

advantage of this search algorithm is its simplicity and better 

performance than many other agent or population based meta 

heuristic algorithms. The algorithm uses only one controlling 

parameter p, which makes it easier to implement and control. 

This parameter p, combined with the random walk mutations 

implemented by Lévy Flights, can control the performance 

and degree of exploration and exploitation of the algorithm. In 

this paper we have conducted a few experiments on Cuckoo 

Search algorithm with Lévy flights to discover the necessary 

conditions needed for the better performance of the algorithm. 

For this purpose we have taken different values of the 

controlling parameter p and observed the performance of the 

algorithm on benchmark problems, as well as its exploration 

and exploitation characteristics over different groups of 

benchmark functions. 
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1. INTRODUCTION 
The aim of any optimization algorithm is to converge to a 

solution which is the best candidate following some criteria. 

Optimization problems may include minimizing or 

maximizing a function by having a set of input values and 

finding out for which value the convergence criteria is 

satisfied. In real world problems we apply optimization 

programming in every walk of our life. First we describe and 

formulate the optimization problem correctly then the task is 

to find the best (sometimes just near optimum) solution that 

meet certain conditions. Among many existing optimization 

algorithms (e.g., [1]–[11]), we have focused on one 

population based meta heuristic algorithm — the Cuckoo 

Search algorithm [1]. Meta heuristic algorithms are stochastic 

optimization procedures that allow random perturbations of 

existing candidate solutions to produce optimal or near 

optimal solutions to complex problems where the best (i.e., 

global optimum) solution can very hardly be found. Meta 

heuristic algorithms are widely used and recently many 

algorithms of this kind have been developed (e.g., [1]–[11]) 

by getting inspired from natural and biological phenomena. 

The Cuckoo search meta heuristic algorithm performs better 

than efficient genetic algorithms and many other swarm 

intelligence algorithms. The algorithm is inspired by the 

obligate brood parasitism of cuckoo species that lays eggs in 

the nest of some other host species. It was developed by Xin 

She Yang and Suash Dev in the year 2009. Later Yang and 

Deb enhanced the performance of the algorithm by using 

Lévy flights for random search style. Lévy flights were 

introduced because flight behavior of some birds and fruit 

flies have similar characteristics with it. In this paper we have 

used cuckoo search algorithm with Lévy flights. Cuckoo 

Search is well known for its simplicity having only one 

control parameter p, which is the discovery rate of cuckoo egg 

by the host bird. The objective is to find the perfect parameter 

value that gives best performance and optimum degree of 

exploration and exploitation. The performance test is 

conducted on low and high dimensional unimodal and 

multimodal functions for each parameter value.  

The rest of the paper organized as follows. Section 2 describes 

ideas of cuckoo search algorithm with Lévy flights and brief 

pseudo code. In section 3 experimental studies and results are 

presented. Finally section 4 draws conclusion and presents 

future research directions based on this work.  

2. CUCKOO SEARCH ALGORITHM 
The cuckoo is a brood parasite, they lay eggs in the nest of 

other birds. Group of female cuckoos favor a particular host 

species nest and laying eggs that match of that species in color 

and pattern. When a cuckoo it finds a host nest with 

incubating eggs, which makes parasitizing impossible, it 

destroys the whole nest. This usually forces the host birds to 

lay fresh eggs giving the cuckoo a chance to parasite the nest. 

If a host bird discovers the eggs are not their own they will 

either get rid of those alien eggs or simply abandon its nest 

and build a new nest elsewhere. Parasitic cuckoos always 

choose a nest where the host birds just laid its own eggs. In 

general cuckoo eggs hatch slightly earlier than their host eggs. 

Once the cuckoo chick is hatched the first instinct action it 

will take is to evict the host eggs by blindly propelling the 

eggs out of the nest increasing cuckoo chick's share of food 

provided by its own host bird. Studies also show that a cuckoo 

chick can also mimic the call of host chicks to gain access to 

more feeding opportunities. In this paper the version of 

cuckoo search algorithm used follows the following three 

rules. 

 One cuckoo will lay one egg on one host nest at a 

time. The host nest is chosen at random. 

 Only fittest nests with high quality of eggs will 

survive to the nest generation. 

 The number of available host nests is fixed and 

discovery rate of each cuckoo egg by the host bird is 

p ∈ [0, 1]. In this case the host bird will abandon the 
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nest upon discovery and build a new one. 

To generate each new solution Lévy flight is implemented in 

the Cuckoo search algorithm. Lévy flights are a random walk 

whose step length is produced from Lévy probability 

distribution. The term Lévy flight was first introduced by 

Benoit Mandelbrat who used Cauchy flight where step size 

distribution follows Cauchy distribution and Rayleigh flight 

where step size is a normal distribution. Lévy flight is 

implemented in chaos theory and stochastic search algorithms. 

Lévy flights works in two steps — firstly, the direction of 

random walk is chosen and secondly, steps are originated at 

that direction which follows Lévy distribution. This random 

walk has a heavy tailed random walk. In nature many birds 

and animals follow food hunting paths those can be 

represented using Lévy flights. This flight gives efficient 

results in natural flight data. Sometimes Lévy flight creates 

new offspring far from its parent, thus ensuring the search 

algorithm does not get stuck around the locally optimal points. 

The Lévy flight is implemented in CSA as follows. 

  1
Lévy 

t t

i i
x x  


    (1) 

 

Figure 1: Pseudo code of the Cuckoo Search Algorithm 

Where α > 0 is the step size of the random Lévy walk. The 

rate and degree of explorations and exploitations rate of the 

Cuckoo search algorithm depends on the control parameter, p. 

The Pseudo code is presented in Fig. 1, where the parameter n 

represents the size of initial population of host nests. 

3. EXPERIMENTAL STUDIES  
This experiment uses 26 benchmark test functions to evaluate 

the performance of Cuckoo Search Algorithm by taking 

different values of control parameter p. Lower value of the 

parameter means less discovery rate of cuckoo eggs by the 

host birds and higher value means more probability of 

discovering the cuckoo egg. In Table 1 the benchmark 

functions we used are included along with dimensions, search 

space, characteristics and function value at the global 

maximum.  Eight of them are unimodal (function no.1–8) and 

the remaining 18 (function no. 9–26) are multimodal. The low 

dimensional functions are the function nos. 2, 5, 6, 11, 12, 15, 

19, 21–26, while the rest are high dimensional. Functions of 

bowl shape (i.e., f16, f18), plate shape (i.e., f4), valley shape 

(i.e., f17, f8), steep, ridges (i.e., f2, f19) and many local minima 

(i.e., f18) are also present in the benchmark suite. The Easom 

Function is unimodal and its global minimum is confined to a 

small area compared to the entire search space whereas Dixon 

price function is unimodal high dimensional and gives 

maximum among all unimodal function as seen from Table 2. 

For multimodal functions, the search algorithms should have 

both exploitative and explorative characteristics so it can 

explore local minima without being stuck and find the global 

optimum. Hundreds of local minima can occur in multimodal 

functions even if it is low dimensional. For example, the 

Cross-In function has multiple global minima with many local 

minima. Drop wave function is a highly complex multimodal 

function to evaluate. Griewank function has many widespread 

local minima regularly distributed and evaluated on 

hypercube. Michalewicz function has many local minima 

which equals to the factorial of dimension of the function and 

its steepness and ridges make it difficult to search. Since the 

increase of dimensions exponentially increase the number of 

local minima, the high dimensional (i.e., D = 20~30) 

multimodal functions are usually extremely difficult to be 

optimized by the search algorithms. Here the search algorithm 

may get stuck in local optima bypassing the global optimum 

and give erroneous results. In case of low dimensional 

functions, the locally minimal points are regularly separated 

by wide regions, so they are also difficult to explore without 

being trapped. Here low dimensional functions are function 

nos. 2, 5, 6, 9, 11, 12, 15, 17, 19–24. 

The results from the experimental studies are given in Table 2 

where initial population size is 20 and the number of 

maximum generation is 500 for each benchmark function. The 

minimum error values are also included in Table 2 which is 

the difference between actual function value at global minima 

and the value the algorithm found at the end of its execution. 

The mean absolute error value is calculated in Table 3 for 

both unimodal and multi modal functions. The key 

observations from the experiment are stated in the following 

points. 

 Out of five value that we took for control parameter 

p, the p = 0.1 gives best result on 17 functions, 0.3 

gives best result on 16 functions becoming the 

second best scorer. This means the lower value of the 

discovery rate p of cuckoo eggs by the host bird 

usually produces better performance. The p = 0.1 

means only 10% of nest containing cuckoo eggs were 

discovered by host bird. So the number of abandoned 

nest is least (only 10%). 

 On unimodal and multi modal functions with low 

dimensions, the search algorithm performs excellent. 

For example, the function nos. 2, 13, 19, 21–26 gives 

zero error for most values of the parameter p. 

 For function nos. 8, 10, 17, 18 all strategies fail and 

they get trapped around the local optima and fail to 

converge to global optimum causing premature 

convergence. For example, Rosenbrock Function (i.e. 

f17) has global minimum inside a long, narrow, 

parabolic shaped flat valley which is difficult to find. 

Here, the algorithm gets stuck in local optima for all 

five parameter values. 

Procedure Cuckoo Search Algorithm (n) 

Determine fitness of each candidate solution of the 
population and define maximum iteration number 

While (I < MaxIterarion) 

Choose a nest, i at random and find its solution 
using Lévy flights by Mantegna's algorithm and 

evaluate its fitness, Fi  using objective function. 

Choose another nest, j randomly and calculate its 

fitness Fj using objective function. 

If (Fi > Fj) then 

replace nest j by nest i's new solution 

End if 

Cuckoo eggs are discovered by host bird with the 
probability, p and these nests are abandoned and 
new nests are made. 

The best solutions survive and becomes initial 
population in the next generation. 

End While 
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 Considering the mean absolute error (MAE) as a 

performance measurement metric, we found that p = 

0.5 gives the least MAE in eight unimodal functions. 

Among 18 multimodal functions, p = 0.3 gives best 

result. The second best result is given by p = 0.7. 

Without considering mean absolute error, we see that 

p = 0.1 gives the best results in five functions out of 

the eight and for multimodal function p = 0.3 gives 

best result on 14 functions.  

 On functions with few local minima the low number 

of dimensions or simpler structure, the parameter 

value p = 0.1 gives best result. This indicates that the 

algorithm gets more explorative and can perform fine 

graining and locate global minimum. As we increase 

the parameter value, it becomes more and 

exploitative. The value of p = 0.3 provides good 

result on 14 test functions and it gives better 

performance on Rosenbrock and Ackley function 

than p = 0.1. 

 

Table 1:  STANDARD BENCHMARK FUNCTIONS WHERE D: DIMENSIONALITY, S: SEARCH SPACE, C:  FUNCTION CHARACTERISTICS 

WITH THE FOLLOWING VALUES —U: UNIMODAL, M: MULTIMODAL, fmin: FUNCTION VALUE AT GLOBAL MINIMUM. 

No Function C D S fmin 

ƒ1 Powell U 24 [–4, 5]D 0 

ƒ2 Easom U 2 [–100, 100]D -1 

ƒ3 Discuss U 30 [–100, 100]D 0 

ƒ4 Sum Series U 30 [–10, 10]D 0 

ƒ5 Zakhazov U 2 [–5,10]D 0 

ƒ6 Matyas U 2 [–10, 10]D 0 

ƒ7 
High Conditioned 

Eclipse 
U 20 [–100, 100]D 0 

ƒ8 Dixon Price U 30 [–10, 10]D 0 

ƒ9 Perm M 4 [–4, 4]D 0 

ƒ10 Rastrigin M 30 [–5.12, 5.12] D 0 

ƒ11 Beale M 2 [–4.5, 4.5] D 0 

ƒ12 Booth M 2 [–10, 10] D 0 

ƒ13 Shekel M 10 [0, 10] D –10.53 

ƒ14 Griewank M 30 [–600, 600] D 0 

ƒ15 Hartman M 3 [0, 1] D –3.862 

ƒ16 Lévy M 30 [–10, 10] D 0 

ƒ17 Rosenbrock M 30 [–5, 10] D 0 

ƒ18 Ackley M 30 [–32.76, 32.76] D 0 

ƒ19 Michalewicz M 2 [0, π] D –1.81 

ƒ20 
Rotated Hyper-

Ellipsiod Function 
M 10 [–65.53, 65.53] D 0 

ƒ21 Six Hump Camel M 2 [–5, 5] D –1.30 

ƒ22 Eggholder M 2 [–512, 512] D –959.64 

ƒ23 Mccormick   M 2 [–4.5, 8] D –1.91 

ƒ24 Cross-In-Tray M 2 [–10, 10] D –2.06 
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ƒ25 Drop-Wave M 2 [–5.12, 5.12] D –1 

ƒ26 Shubert  M 2 [–5.12, 5.12] D –186.73 

 

TABLE 2:  Performance of the Cuckoo Search Algorithm on benchmark functions with different values of the control 

parameter p, which determines the rate of discovery of alien eggs. The algorithm was run 500 different times independently on 

each benchmark function. The best result on each function is marked with boldface font. 

Function 

No 

Minimum Error Value 
Best Performance 

By 
p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9 

f1 0.696 0.106 0.732 1.985 5.108 p = 0.3 

f2 0.0 0.0 0.0 0.0 0.06 p = 0.1/0.3/0.5/0.7 

f3 4.53e-16 2.04e–14 3.21e-13 7.91e-10 0.098 p = 0.1 

f4 1.26 0.84 0.71 2.21 3.44 p = 0.5 

f5 2.18e–28 1.52e–25 6.62e–20 1.74e–15 1.97e–07 p = 0.1 

f6 1.41e-34 4.86e-24 3.60e-18 2.46e-12 4.76e-06 p = 0.1 

f7 2.78e-20 9.27e-17 8.47e-15 1.49e-08 0.0029 p = 0.1 

f8 29.68 5.39 2.50 5.80 8.18 p = 0.5 

f9 0.027 0.003 0.05 0.01 0.07 p = 0.3 

f10 84.42 80.93 86.02 89.60 54.85 p = 0.9 

f11 1.79e-25 4.78e-16 1.61e-14 1.45e-07 0.002 p = 0.1 

f12 5.44e-20 4.35e-18 6.69e-10 1.68e-05 0.004 p = 0.1 

f13 0.0 0.0 0.0 0.0 0.03 
Except p = 0.9 all 

similar 

f14 1.43 1.05 1.08 1.10 1.40 p = 0.3 

f15 0.0 0.0 0.0 0.0 0.0 All similar 

f16 1.28 8.66 13.33 7.60 4.59 p = 0.1 

f17 599.29 174.74 195.96 189.73 250.22 p = 0.3 

f18 3.90 3.20 3.58 5.55 6.49 p = 0.3 

f19 0.0 0.0 0.0 0.0 0.0 All similar 

f20 3.24e-05 5.55e-07 4.27e-05 8.42e-05 0.048 p = 0.3 

f21 0.0 0.0 0.0 0.0 0.0 All similar 

f22 0.0 0.0 0.0 0.0 0.0 All similar 

f23 0.0 0.0 0.0 0.0 0.0 All similar 

f24 0.0 0.0 0.0 0.0 0.0 All similar 

f25 0.0 0.0 0.0 0.0 0.001 
All similar except    

p = 0.9 

f26 0.0 0.0 0.0 0.0 0.0 All similar 
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TABLE 3:  Performance comparison of Cuckoo Search Algorithm with different values of the control parameter, p. The best 

performances are marked with boldface font. 

Value of Control 

parameter, p 

Mean Absolute Error Value 

Unimodal Function Multimodal Function 

0.1 3.95 38.35 

0.3 0.79 14.90 

0.5 0.49 16.66 

0.7 1.24 16.31 

0.9 2.10 17.65 

 

4. CONCLUSION  
This paper conducts an experiment on the Cuckoo search 

algorithm to find out which value of the control parameter p 

can produce overall best result on complex benchmark 

functions. Results reveal that if we take value of p from the 

interval of [0.1–0.3], the algorithm gives excellent overall 

results. Recent experiments show that the Cuckoo Search 

algorithm is far better than particle swarm optimization and 

many existing genetic algorithm variants. Besides, the Cuckoo 

search is very easy to implement and have only one control 

parameter p. We propose a few suggestions for future research 

directions. Firstly, the basic Cuckoo search algorithm can be 

easily hybridized with other genetic and swarm intelligence 

algorithms, such as the Flower pollination and Simulated 

annealing Algorithms to improve its performance better. 

Secondly, the basic Cuckoo search and hybrid Cuckoo search 

algorithm variants may can employed on many existing 

discrete, combinatorial and real word optimization problems, 

including design, scientific and engineering optimization 

problems, NP hard combinational problems, Data fusion in 

wireless sensor networks, training neural networks, 

manufacturing  scheduling, Nano electronic  technology based 

operation amplifier and so on.  
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