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ABSTRACT  

Swarm intelligence (SI) is the communal behavior of devolved, 

self-organized structures, natural or artificial. SI systems consist 

typically of a population of simple agents interacting locally 

with one another and with their environment. The inspiration 

often comes from nature, especially biological systems. The 

agents follow very simple rules, and although there is no 

centralized control structure dictating how individual agents 

should  behave, local, and to a certain degree random, 

interactions  between such agents lead to the emergence of 

"intelligent"  global behavior, unknown to the individual agents 

This research work aims at hybridizing the conventional Particle 

Swarm Optimization (PSO) algorithm with the pheromone 

mechanism of Ant Colony Optimization (ACO) to attain faster 

convergence on a feasible standard PSO solution space then  

benchmarked against standard optimization test functions using 

Python Programming language to  prove the correctness and 

convergence of the Hybridized PSO optimization mode for 

minimization. The result shows that hybridizing swarm 

intelligence performs better in solving difficult continuous 

optimization problems. 

General Terms 
Algorithm, Optimization, Algorithmic Pseudo-code, Swarm 

Intelligence, 

Keywords  
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1. INTRODUCTION 

Nature obscures many mysteries. In the past, behaviors like ants 

foraging and flight flocks were considered as magical secrets of 

nature.  Nature always plays a vital role to solve complex human 

problems. In the past few years biology based techniques get the 

attentions of researchers in the field of Information Security. 

These and other phenomena inspired researchers to study and 

understand their secrets. The unraveling of many of these 

mysteries and secrets led to the foundation of new artificial 

intelligence science known as Swarm Intelligence (SI) [19]. 

A swarm is a large number of homogenous, simple agents 

interacting locally among themselves, and their environment, 

with no central control to allow a global interesting behavior to 

emerge. Swarm intelligence refers to systems, which accomplish 

complex global tasks through the simple local interactions of 

autonomous agents.  The control is completely distributed 

among the individual agents with no leader coordinating any of 

the activities. Swarm intelligence is the emergent collective 

intelligence of groups of simple agents. It is a computational 

intelligence approach to solve real world complex problems.  

Beni and Wang [6] first introduced it in cellular robotics system. 

Swarm intelligence systems buildup of a population of simple 

agents interactive with each other individually or with their 

environment. The inspiration of swarm intelligence comes from 

the biological or natural system.  Insects, bees and birds in the 

form of swarms solve the complex problem that seems almost 

impossible at individual level.  

Researchers have done so many works in this field and created 

many swarm intelligence based algorithms models and 

applications. Few important Swarm Intelligence (SI) algorithms 

are: 

i Ant colony optimization algorithm  

ii Artificial Bee colony algorithm  

iii Particle swarm optimization  

iv Firefly Algorithm  

v Multi-swarm optimization  

vi River Formation Dynamics 

vii                                   

viii Cat Swarm Optimization algorithm 

ix Artificial Immune System algorithm 

x Glowworm Swarm Optimization algorithm  

2. PARTICLE SWARM OPTIMISATION 

(PSO) 
Particle swarm optimization (PSO) is a stochastic search 

technique considered as one of the modern heuristic algorithms 

for optimization, introduced by Kennedy and Eberhart [23]& 

[24]. It is based on the social behaviour metaphor of bird 

flocking and it is a population-based optimization technique. 

According to Hazem and Janice [19]. The advent of flocking 

and schooling in assemblages of interacting agents (such as 

birds, fish, etc.) have long fascinated a wide range of scientists 
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from diverse disciplines including animal behaviour, physics,  

social psychology, social science, and computer science for 

many years. Bird flocking can be defined as the social collective 

motion behaviour of a large number of interacting birds with a 

common group objective. The local collaborations among birds 

(particles) usually emerge the shared motion direction of the 

swarm.  Such collaborations are based        “     s       b u  

p     p  ” w     b  ds f    w         f   k     u  s     djus  

their motion (i.e., position and velocity) based only on their 

nearest neighbours, without any central management The 

pioneering work of Reynolds [35] proposed three simple 

flocking rules to implement a simulated flocking behaviour of 

birds:  

a. flock centering  (flock members attempt  to stay close to 

nearby flockmates  by flying in a direction that keeps  them 

closer to the centroid of the nearby flockmates), 

b. Collision avoidance (flock members avoid collisions with 

nearby flockmates based on their relative position), and  

c. Velocity matching (flock members attempt to match 

velocity with nearby flockmates). 

In PSO, participant solutions of a population, called particles, 

coexist and evolve simultaneously based on knowledge sharing 

with neighbouring particles. While flying through the problem 

search space, each particle generates a solution using directed 

velocity vector. Each particle modifies its velocity to find a 

better solution (position) by applying its own flying experience 

(that is, memory having best position found in the earlier flights) 

and experience of neighbouring particles that is, best found 

solution of the population. Finally, all particles fly towards the 

best [35]. 

The standard PSO model consists of a swarm of particles, 

moving interactively through the feasible problem space to find 

new solutions. Each particle has a position represented by a 

position vector where n is the index of the particle and a velocity 

represented by a velocity vector. Each particle remembers its 

own best position so far in the vector, pbest and the best position 

vector among the swarm, gbest.  

The search for the optimal position (solution) advances as the 

p       s’ v        s   d p s     s     upd   d. A p       ’s 

velocity and position are updated as follows: 

                                             (1)                   

                              (2)

                                                                                    

Where  

-      = Velocity of the particle at n+1th iteration 

-   = Particle inertia weight 

-    = Velocity of particle at nth iteration 

-    = acceleration factor related to      , the cognitive 

scaling parameter 

-    = acceleration factor related to      , the social 

scaling parameter 

-    = random number between 0 and 1 

-    = random number between 0 and 1 

-       = global best position on the swarm 

-       = personal best position of the particle 

The position of each particle in the swarm is affected both by the 

most optimist position during its movement (individual 

experience) and the position of the most optimist particle in its 

surrounding (near experience).  Each solution vector can be 

confined to a vector range to control excessive roaming of 
particles outside the search space [19]. 

The particle weight inertial is reduced dynamically to decrease 

the search area in gradual fashion, using the equation below: 

                
         

    
                     (3)                                               

-      = Maximum particle weight inertia 

-      = Minimum particle weight inertia 

-      = Given maximum number of iterations 

Particle flies toward a new position using equation (1) and (2). 

All particles of the swarm find their new positions and apply 

these new positions to update their individual best position and 

global best position of the swarm. This process is repeated until 

maximum number of iteration count      is reached. 

 

                      Figure 1 PSO Algorithmic Pseudo-Code 

3.  ANT COLONY OPTIMISATION 

(ACO) 
I      1990’s, A   C    y Op    z      w s      du  d  s   

novel nature inspired method for the solution of hard 

optimization problems [12].  

Ants, like many other social insects, communicate with each 

other using volatile chemical substances known as pheromones, 

whose direction and intensity can be perceived with their long, 
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mobile antennae.  The term "pheromone" was first introduced by 

Karlson and Lüscher [22], based on the Greek word pherein 

(means to transport) and hormone (means to stimulate).  There 

are different types of pheromones used by social insects. One 

example of pheromone types is alarm pheromone that crushed 

ants produce as an alert to nearby ants to fight or escape 

dangerous predators and to protect their colony [28].  

Another important type of pheromone is food trail. Ants live on 

the ground and make use of the soil surface to leave pheromone 

trails, which can be followed by other ants on their way to 

search for food sources. Ants that happened to pick the shortest 

route to food will be the fastest to return to the nest, and will 

reinforce this shortest route by depositing food trail pheromone 

on their way back to the nest. 

The inspiring source of ACO is the foraging behaviour of real 

ants. When searching for food, ants initially explore the area 

surrounding their nest in a random manner. As soon as an ant 

finds a food source, it evaluates it and carries some food back to 

the nest. During the return trip, the ant deposits a pheromone 

trail on the ground. The pheromone deposited, the amount of 

which may depend on the quantity and quality of the food, 

guides other ants to the food source. As it has been shown [17], 

indirect communication among ants via pheromone trails 

enables them to find shortest paths between their nest and food 

sources. 

In the ACO algorithm, an artificial ant colony simulates the 

pheromone trail following behaviour of real ants. Artificial ants 

move on a construction graph representing a specific problem to 

construct solutions successively. The artificial pheromone that 

corresponds to the record of routes taken by the ant colony is 

accumulated at run-time through a learning mechanism. 

Individual ants concurrently collect necessary information, 

stochastically make their own decisions and independently 

construct solutions in a stepwise manner. The information 

required for making a decision at each step includes pheromone 

concentration, problem related data and heuristic function 

values. The pheromone laid on the path belonging to the 

iteration-best solution will be positively increased to become 

more attractive in the subsequent iterations. Because of self-

organize and reverse-engineering behaviour, ACO can 

effectively and efficiently solve a wide class of combinatorial 

optimization problems. This capability of real ant colonies has 

inspired the definition of artificial ant colonies that can find 

approximate solutions to hard multimodal optimization 

problems. The central component of ACO algorithms is the 

pheromone model, which is used to probabilistically sample the 

search space. Recently, there are few adaptations of ACO for 

solution of continuous optimization problems. In this work, a 

simple pheromone-guided search mechanism of ant colony is 

implemented which acts locally to synchronize positions of the 

particles of PSO to quickly attain the feasible domain of 

objective function. 

4. SYSTEM ANALYSIS AND DESIGN 

4.1 Hybridization of Particle Swarm 

Optimisation using Ant Colony 

Optimisation 

Swarm intelligence meta-heuristics, namely, particle swarm 

optimisation and ant colony optimisation are proven to be 

successful approaches to solve complex optimization problems. 

PSO algorithm, whose concept began as a simulation of a 

simplified social environment, is a powerful optimization 

technique for solving multimodal optimization problems [33], 

[8] & [32]. ACO imitates foraging behaviour of real life ants, 

and are known to be efficient and robust for solution of 

combinatorial optimization problems [42], [11], [50], & [46]. 

 

Figure 2 (Hybridized PSO) Model Algorithmic Pseudo-code 

The implementation of this proposed algorithm comes in two 

stages. In the first stage, PSO is applied while ACO is 

implemented in the second stage. ACO works as a local search, 

wherein, ants apply pheromone-guided mechanism to update the 

positions found by the particles in the earlier stage, to attain 

rapid convergence on a feasible solution space. The 

implementation of ACO in the second stage of this model is 

based on the studies of Angeline [8] which shows that: 

i. PSO discovers reasonable quality solutions much 

faster than other evolutionary algorithms 

ii. If the swarm is going to be in equilibrium, the 

evolution process will be stagnated as time goes on. 

Thus, PSO does not possess the ability to improve 

upon the quality of the solutions as the number of 

generations is increased. 
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In this proposed model, a simple pheromone-guided mechanism 

of ACO is proposed to apply as local search. 

 The proposed ACO algorithm handles P ants equal to the 

number of particles in PSO. Each ant i generate a solution zt 

around gbest the global best-found position among all particles in 

the swarm up to iteration count t as [43]: 

                                                                   (4)                                                                         

  

The components of the solution vector    which satisfies the 

Gaussian distribution with mean       and standard deviation   

is generated, where, initially at t = 1 value of   = 1 and is 

updated at the end of each iteration as  

  =                 (5)                                                                                                     

   

  is a parameter in (0.25, 0.997) and if   <      then   =      , 

where,      is a parameter in (10-2 , 10-4 ). 

The objective function around   ,       is the computed and 

replaces the current position of the particle swarm if       
       the         

This simple pheromone-guided mechanism considers there is 

highest density of trails (single pheromone spot) at the global 

best solution gbest of the swarm at any iteration t + 1 in each 

stage of ACO implementation and all ants P search for better 

solutions in the neighbourhood of the global best solution. In the 

beginning of the search process, ants explore larger search area 

in the neighborhood of gbest due to the high value of standard 

deviation r and intensify the search around gbest as the 

algorithm progresses [43]. ACO pheromone mechanism helps 

PSO process, not only to efficiently perform global exploration 

for rapidly attaining the feasible solution space, but also to 

effectively reach optimal or near optimal solution [42]. The 

(Hybridized PSO) Model Algorithmic Pseudo-code and the 

flowchart are shown in Figure 2 and Figure 3 respectively  

Figure 3 Flowchart diagram for proposed hybridized PSO 

with ACO 

5. IMPLEMENTATION AND RESULTS 
This section presents the implementation and report of the 

proposed hybridized model tested and validated against three 

benchmark functions namely Ackley function, Rastrigin 

function and Rosenbrock function to evaluate the optimization 

of the hybridized algorithm and compare result with standard 

PSO. 

A python program was developed to test the proposed model 

against these benchmark functions.   

The hybridized PSO algorithm and standard PSO algorithm is 

experimented on 50 particles in solution space over 100 

iterations. The results of the validation are present below. 

5.1 Ackley Fitness Function 
The Ackley function, proposed by David Ackley [1] is an n-

dimensional function that has a large number of local minima 

but only one global minimum. It is a typical problem to solve 
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with evolutionary algorithms and is widely used for testing 

optimization algorithms. 

                  
 

 
   

  
         

 

 
          
 
        

           (6) 

5.2 Rastrigin Fitness Function 
Rastrigin function, proposed by Rastrigin [34], is a non-convex 

function used as a performance test problem for optimization 

algorithms. It is a typical example of non-linear multimodal 

function and has many local minima and one global minimum. 

The farther the local minimum is from the origin, the larger the 

value of the function is at that point. 

              
               

 
       (7)                                                 

5.3 Rosenbrock Fitness Function 
In mathematical optimization, the Rosenbrock function is a non-

convex function, introduced by Howard H. Rosenbrock [36], 

which is used as a performance test problem for optimization 

algorithms. It is also known as Rosenbrock's valley or 

Rosenbrock's banana function 

                                                                 (8)                                                                       

 

Figure 4: Ackley benchmark function against Standard PSO 

and Hybridized PSO after 100 iterations. 

Table 1: Ackley benchmark function against Standard PSO 

and Hybridized PSO after 100 iterations. 

Iteration Hybridized PSO Standard PSO 

10 17.2926113508 17.2919271035 

14 17.2926113233 17.2919272349 

15 17.2926113232 17.2919272349 

20 17.2926113232 17.2919271035 

25 17.2926113232 17.2919271029 

26 17.2926113232 17.2919271028 

30 17.2926113232 17.2919271028 

40 17.2926113232 17.2919271028 

50 17.2926113232 17.2919271028 

60 17.2926113232 17.2919271028 

70 17.2926113232 17.2919271028 

80 17.2926113232 17.2919271028 

90 17.2926113232 17.2919271028 

100 17.2926113232 17.2919271028 

 

From the data Figure 4 and Table 1, it is noted that using the 

Hybridized PSO function, the Ackley benchmark solution 

converges on the 15th iteration, in contrast to the standard PSO 

algorithm that converges on the 26th iteration, representing a 

42.31% increase in convergence speed. 

 

Figure 5: Rastrigin benchmark function against Standard 

PSO and Hybridized PSO after 50 iterations 

Table 2: Rastrigin benchmark function against Standard 

PSO and Hybridized PSO after 100 iterations 

Iteration Hybridized PSO Standard PSO 

10 198.9837645750 198.9832800765 

20 198.9832499365 198.9832501278 

29 198.9832488068 198.9832488295 

30 198.9832488064 198.9832488295 

40 198.9832488064 198.9832488065 

41 198.9832488064 198.9832488065 

42 198.9832488064 198.9832488064 

50 198.9832488064 198.9832488064 
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60 198.9832488064 198.9832488064 

70 198.9832488064 198.9832488064 

80 198.9832488064 198.9832488064 

90 198.9832488064 198.9832488064 

100 198.9832488064 198.9832488064 

 

The table 2 and figure 5 above reflects the superiority of the 

Hybridized PSO optimization model over standard PSO model. 

It is shown that using the proposed hybridized model, 

convergence is achieved upon the 30th iteration count. This 

reflects a 28.57% convergence speed increase when compared to 

the standard PSO model, which attains convergence upon the 

42nd iteration, when solving the Rastrigin benchmark function. 

 

Figure 6: Rosenbrock benchmark function against Standard 

PSO and Hybridized PSO after 40 iterations. 

Table 3: Rosenbrock benchmark function against Standard 

PSO and Hybridized PSO after 100 iterations 

Iteration Hybridized PSO Standard PSO 

10 1.6041532037 1.594699936 

20 1.5937445326 1.593740284 

27 1.5937382194 1.593740284 

28 1.5937381959 1.593740284 

30 1.5937381959 1.593738207 

37 1.5937381959 1.593738197 

38 1.5937381959 1.593738196 

40 1.5937381959 1.593738196 

50 1.5937381959 1.593738196 

60 1.5937381959 1.593738196 

70 1.5937381959 1.593738196 

80 1.5937381959 1.593738196 

90 1.5937381959 1.593738196 

100 1.5937381959 1.593738196 

 

Figure 6 and Table 3 data further strengthens the Hybridized 

PSO   d  ’s  dv        v   s   d  d PSO   d  . I   s s  w  

that using the Hybridized PSO model, convergence is achieved 

upon the 28th iteration count. This reflects a 26.32% 

convergence speed increase when compared to the standard PSO 

model, which attains convergence upon the 38th iteration, when 

solving the Rosenbrock benchmark function. 

6.  CONCLUSIONS 
The proposed hybridized model was tested and validated against 

three well-known optimization benchmark functions namely 

Ackley function, Rastrigin function and Rosenbrock function, 

using 50 particles in solution space over 100 iterations. Against 

Ackley fitness function, a 42.31% improvement is convergence 

speed is identified when compared to existing standard PSO 

model, 28.57% when tested against Rastrigin benchmark 

function and 26.32% improvement using the Rosenbrock 

function. The comparison of the numerical result of the 

hybridized PSO with standard PSO shows that hybridizing 

swarm intelligence is better in solving difficult continuous 

optimization problems. 
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