

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

19

An Improve Shannon Fano Data Compression Algorithm

using Residue Number System

T.D. Lawal
Computer Science Department

Federal Polytechnic Offa
Nigeria

L.O. Olatunbosun
Department of Computer Science
Federal University of Agriculture

Abeokuta, Nigeria

K.A. Gbolagade
Department of Computer Science

Kwara State University Malete
Nigeria

ABSTRACT
The last two decades has witness the rapid development of

hardware and software due to technological advancement.

This has equally facilitated an increase in generation of

information for storage and spread through the internet around

the world. The rate at which storage and bandwidth facilities

are being develop has not been able to match the rate at which

information are been produce for storage and transmission.

This has resulted in the researchers looking in the area of data

compression. Many Data compression algorithms such as

Shannon Fano, Huffman, Lempel Ziv, Arithmetic etc. have

been develop. Shannon Fano was found to be one of the best

compression algorithms. It is however having the challenges

of low compression ratio, high compression factor, low

amount of space saved and low saving percentage. In this

paper, Residue Number System was embedded in the

Shannon Fano algorithm to enhance its performance. File

documents of various sizes was compressed using both

Shannon Fano and RNS-Shannon Fano algorithms. The

results show a significant improvement performance over the

traditional Shannon Fano compression algorithm.

Keywords Embedded Shannon Fano (ESF), Residue Number

System (RNS), Compression Ratio (CR), Compression Factor

(CF)

Keywords
Data Compression Algorithm, Residue Number System

1. INTRODUCTION
Our world has been greatly transformed by information

technology. The rapid development of hardware and software

due to technological advancement has facilitated the storage

and spread of information through the internet around the

world. The rate of increase in the number of bytes of data

store, processed and transmitted is tremendous. This happened

as a result of growing internet technology and rapid

development of mobile communication. The rate at which

storage and bandwidth facilities developed however has not

been able to match the rate at which information are produce.

Data compression is the technology that is used to

compliment the efforts of storage and bandwidth

development. For effective storage, memory and bandwidth

management, hardware and software technological

development should be accompanying by data compression

[1].

Data compression is a process of resizing a file or document

to be smaller in size. It is the art of representing information

in a compact form rather than its original or uncompressed

form [2]. The major importance of data compression is that it

enables data to be stored in a format that occupies less space

than the original form thus reducing the amount of space

require for storage or transmission [3].

The main aim of data compression is to eliminate redundancy

in the data through different efficient methodology so that the

reduced data can save space to store the data, time to transmit

the data and cost to maintain the data. To eliminate the

redundancy, the original file is represented with some coded

notation and this coded file is known as ‘encrypted file’[4].

Data compression is broadly divided into lossy and lossless

depending on whether you can get the exact original data back

when the compressed data is later decompressed.

In a Lossless compression algorithm such as Huffman,

Shannon Fano and Lempel Ziv, the reconstruction of the

original data from the original file does not result in any loss

of data. Therefore, the information does not change during the

compression and decompression processes. These kinds of

compression algorithms are called reversible compressions

since the original message is reconstructed by the

decompression process. Lossless compression techniques are

used to compress medical images, text and images preserved

for legal reasons, computer executable file and so on. Lossy

compression algorithms on the other hand, results in

reconstruction of the original message with loss of some

information. It is not possible to reconstruct the original

message using the decoding process and is called irreversible

compression. The decompression process results in an

approximate reconstruction. This technique is desirable in a

situation when data of some ranges which could not be

recognized by the human brain can be discarded. Lossy

techniques could be used for multimedia images, video and

audio to achieve more compact data compression

Kodituwakku and Amarasinghe (2004).

2. BACKGROUND OF SHANNON FANO

ALGORITHM
Shannon Fano compression algorithm is the type of lossless

algorithm construct a prefix code based on the set of symbols

and their probabilities or frequency. Different symbols are

sorted according to their frequencies after which the sorted

symbols with their occurrence are group into two parts

according to their frequency [6]. It is an entropy encoding

algorithm. Unlike Huffman, Shannon Fano algorithm follows

a top down tree construction and code assigning approach

with a symbol by symbol encoding and it does not achieve the

lowest possible expected code word length [7]. Shannon Fano

algorithm encode information depending on the frequency of

occurrence by allotting small number of bits for information

with large frequency and large number of bits for information

with less frequency [8]. The Shannon Fano compression

algorithm is achieved by the following steps:

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

20

1. determine the frequencies or probability of a given

list of symbols, so that each symbol’s relative

frequency of occurrence is known.

2. Sort the table according to the frequency, with the

most frequently occurring symbol at the left and the

least common at the right.

3. Divide the list into two parts, with the total

frequency counts of the left part being as close to

the total of the right as much as possible.

4. The left part of the list is assigned the binary digit 0,

and the right part is assigned the digit 1. This means

that the codes for the symbols in the first part will

all start with 0, and the codes in the second part will

all start with 1.

5. Recursively apply the steps 3 and 4 to each of the

two halves, subdividing groups and adding bits to

the codes until each symbol has become a

corresponding leaf on the tree.

This is represented in figure 1 below.

For instance, given the following message:

AAABBBBBBBBBBBBCCCCCCDDDDDDDEEEEFF

FFFFFFFF (as presented in Table 1)

Total number of characters is 40.

The ASCII code size of a character is 8 bits.

Total size of the data is 8 * 40 = 320 bits

Table 1: Characters and their frequency

Character A B C D E F

Frequency 3 12 6 5 4 10

Using Shannon Fano compression algorithm, the

message compression process is as shown below in

Figure 1.

 0 1

 0 1 0 1

 0 1 0 1

Figure 1: Shannon Fano Scheme

Table 2: Shannon Fano compression logic

Character No of bit Freq bits*Freq

A 111 3 9

B 00 12 24

C 100 6 18

D 101 5 15

E 110 4 12

F 01 10 20

 16 98 bits

From Table 2 above, the size of the message is 98 bits.

The size of the chart is the total number of bits which is 16

bits The ASCII code of the alphabet is the number of different

characters multiply by 8 (6 * 8) = 48 bits.

The total size of the message is 98 + 16 + 48 = 162 bits

This means that Shannon Fano has compressed the message

from 320 bits to 162 bits i.e., the message has been more than

50% compressed.

3. PROPOSED SCHEME
A highly compressed data for storage and/or transmission is

being proposed. This is achieved by the introduction of

residue number system (RNS). Residue number system (RNS)

is a non-weighted, non-positional number system which can

be represented by specifying its base. RNS is different from

Decimal or Binary Number System as it does not have a

single fixed radix. Their bases are represented by a u tuple of

integers (m1, m2, m3,, ., ., mu,) where each of these bases are

called modulus. Any given integer in RNS is represented by a

B12F10C6D5E4A3

B12F10 C6D5E4A3

C6D5 B12 F10 E4A3

C6
D5

A3 E4

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

21

Message
Extract unique

character and

their frequency

Shannon Fano Process

base on residue x & f

Moduli set (Mset)

Get residues wrt
Mset for each x & f

Compressed Message

Get ASCII value for

each character (x)

Frequency of each

character (f)

set of residues obtained by modulo which are relatively prime

to each other, dividing the integer with a moduli set [9].

One of the main reasons why computing hardware based on

Weighted Number System (WNS) cannot be speed up beyond

certain bounds is carry propagation. The major challenge

therefore in improving the computer arithmetic unit

performance is the reduction or elimination of carry chain

[10]. RNS has been the most challengeable alternative number

system in computer arithmetic for more than half a century

[11]. Its ability to perform addition, subtraction and

multiplication without carry-propagation between residues

make it stand out. RNS is a numeral system representing

integers by their values modulo several pairwise coprime

integers called moduli. The inherent features such as carry

free operations, parallelism, modularity and fault tolerant

possessed by RNS conferred very great advantages over

conventional binary number system. These advantages make

its application wide in Digital Signal Processing applications.

However, RNS have challenges in sign detection, magnitude

comparison, overflow detection and division, Sousa 2007. The

most critical aspect of RNS applications is the choice of

moduli set and data conversion. The complexity and the

speed of the conversion algorithm depend on the choice of

moduli set, [13]. Any integer X in the dynamic range, M = mi,

m2, m3,...,mn, is represented by N-tuple (x1, x2, x3,...,xn),

where xi is the residue of X in moduli mi for i = 1,2,3,...,n. To

revert residues number back to its weighted equivalent value,

Chinese Remainder Theorem (CRT) was used [14].

Using CRT, the number X can be computed from its residue

by the following expression:

Such that

 = * *...*

 = (m1* m2*...mn) ⁄ mi

M
-1 is the multiplicative inverse of Mi with respect to modulus

mi

 is the set of residue X with respect to moduli i

The following is the framework for the proposed Embedded

Shannon Fano (ESF) algorithm:

Figure 2: proposed RNS ESF framework

In figure 2, the characters that form the message and their

frequencies of occurrence were extracted along with their

ASCII value. Using traditional moduli set, given a character

X, the forward conversion to their equivalent residues is given
as

 .

Thus for moduli set

 . As shown in Table 3. The

operation is then performed on the residues instead of decimal

or binary values. The result of the frequency multiplication by

Shanon Fano code in RNS is shown in Table 4. The result of

the compressed message in both Shanon Fano and RNS ESF

code is shown in Table 5.

Table 3: forward conversion

Character ASCII

Code

Binary

Code

RNS with Moduli set Bits Space

 3 4 5

A 65 8 2 1 0 4

B 66 8 0 2 1 4

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

22

C 67 8 1 3 2 5

D 68 8 2 0 3 5

E 69 8 0 1 4 5

F 70 8 1 2 0 4

 48 27

Table 4: Frequency multiplication by Shannon Fano code in RNS

Character freq RNS with

moduli set

Shannon

Fano code

RNS with

moduli set

Freq* Shannon

Fano code

RNS with

moduli set

Bits

Space

 3 4 5 3 4 5 3 4 5

A 3 0 3 3 111=3 0 3 3 3*3=9 0 1 4 5

B 12 0 0 2 00=2 2 2 2 12*2=24 0 2 4 6

C 6 0 2 1 100=3 0 3 3 6*3=18 0 2 3 5

D 5 2 1 0 101=3 0 3 3 5*3=15 0 3 0 4

E 4 1 0 4 110=3 0 3 3 4*3=12 0 0 2 4

F 10 1 2 0 01=2 2 2 2 10*2=20 2 0 0 4

 40 16 bits 108 bits 28 bits

Table 5: compressed message in Shannon Fano and RNS ESF code

 Shannon Fano codes RSN Codes

 Message 98 bits 28 bits

ASCII binary codes 48 bits 26 bits

Table or chart 16 bits 16 bits

 162 bits 70 bits

4. RESULT ANALYSIS AND

DISCUSSION
A file document of 3,888, 4224, 7976, 8984, 11056 and 13120
bits messages were compressed using both Shannon

Fano and proposed RNS ESF compression algorithms. The

results were analyzed using Compression Ratio (CR),

Compression Factor (CF), Saving Percentage (SP) and
Amount of Spaced saved.

.

Table 6: original message size and their corresponding Shannon Fano

Original Message size (bits) Shannon Fano size

(bits)

RNS-EFS size (bits)

3888 3006 654

4224 3316 693

7976 6069 972

8984 6439 969

11056 8404 1130

13120 10210 1203

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

23

Figure 3: original message size and their Shannon Fano and RNS-ESF sizes

From table 6 and figure 3, the original messages were better

compressed by embedded RNS-Shannon Fano than traditional
Shannon Fano

Table 7: Compression Ratio

Original Message size (bits) Shannon Fano size (bits) RNS-Shannon Fano size

(bits)

3888 1.6322418136020151 23.563636363636363

4224 1.5909604519774012 25.75609756097561

7976 1.5556855861127366 38.90731707317073

8984 1.6304900181488202 44.03921568627451

11056 1.5112083105522143 48.27947598253275

13120 1.4489232468249587 54.21487603305785

Figure 4: compression ratio

From table 7 and figure 4, it is observed that compression

ratio of RNS-ESF are significantly higher than that of

Traditional Shannon Fano.

Table 8: Compression Factor

Original Message size (bits) Shannon Fano size (bits) RNS-Shannon Fano size

(bits)

3888 0.6126543209876543 0.04243827160493827

4224 0.6285511363636364 0.038825757575757576

7976 0.6428034102306921 0.02570210631895687

8984 0.6133125556544969 0.022707034728406055

11056 0.6617221418234442 0.02071273516642547

13120 0.6901676829268293 0.01844512195121951

0

5000

10000

15000

Original Message

Shannon Fano

RNS-Shannon Fan

0

10

20

30

40

50

60

3888 4224 7976 8984 11056 13120

Shannon Fano(bits)

RNS-Shannon Fano size
(bits)

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

24

Figure 5: Compression factor

From table 8 and Figure 5, it is observed that compression

factor of embedded RNS-ESF is significantly lower than that

of Traditional Shannon Fano.

Table 9: Amount of Space Save

Original Message size (bits) Shannon Fano size (bits) RNS-Shannon Fano size

(bits)

3888 0.38734567901234573 0.9575617283950617

4224 0.37144886363636365 0.9611742424242424

7976 0.3571965897693079 0.9742978936810431

8984 0.38668744434550306 0.9772929652715939

11056 0.33827785817655576 0.9792872648335745

13120 0.3098323170731707 0.9815548780487805

Figure 6: Amount Space Saved

From Table 9 and Figure 6, it is observed that amount of

space saved by RNS-ESF are significantly higher than that of
Traditional Shannon Fano.

Table 10: Saving Percentage

Original Message size (bits) Shannon Fano size (bits) RNS-Shannon Fano size

(bits)

3888 38.73456790123457 95.75617283950618

4224 37.14488636363637 96.11742424242425

7976 35.71965897693079 97.42978936810431

8984 38.66874443455031 97.72929652715939

11056 33.82778581765557 97.92872648335745

13120 30.98323170731707 98.15548780487805

0

0.2

0.4

0.6

0.8

3888 4224 7976 8984 11056 13120

Shannon Fano(bits)

RNS-Shannon Fano size (bits)

0

0.5

1

1.5

3888 4224 7976 8984 11056 13120

Shannon Fano(bits)

RNS-Shannon Fano size (bits)

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7– No. 35, April 2021 – www.caeaccess.org

25

Figure 7: Saving Percentage

From Table 10 and Figure 7, it is observed that saving of

RNS-ESF are significantly higher than that of Traditional

Shannon Fano

5. CONCLUSION
The improve technology of storage and bandwidth facilities

development has not been able to match huge amount of

information that is daily churn out for storage and

transmission. These challenges rekindle the interest of

researchers to continuously focus on the area of data

compression. Shannon Fano algorithm has proved to be one of

the effective means of compression, however, the algorithm

has the challenges of low compression ratio, high

compression factor, low amount of space saved and low

saving percentage. In this paper, we propose a new Shannon

Fano compression algorithm using RNS with traditional

moduli set. With the introduction of RNS to Shannon Fano

algorithm, there was a significant improvement in ESF

performance in term of these metrics as shown in Tables 6, 7,

8, 9 and 10, and Figures 3, 4, 5, 6 and 7. It is evident that our

proposed method produced a better result than the traditional

method.

6. REFERENCES
[1] Rachesti, D. A., Purboyo, T. W. and Prasasti, A. L.

(2017): Comparison of Text Data Compression Using

Huffman, Shannon-Fano, Run Length Encoding, and

Tunstall Methods. International Journal of Applied

Engineering Research ISSN 0973-4562 Volume 12,

Number 23 (2017) pp. 13618-13622

[2] Pu, I. M., (2006): Fundamental Data Compression,

Elsevier, Britain.

[3] Jacob, N. Somvanshi P. and Tornekar R. (2012):

Comparative Analysis of Lossless Text Compression

Techniques. International Journal of Computer

Applications (0975– 8887) Volume 56– No.3,

[4] Bhattacharjee, A. K., Bej, T. and Agarwal S. (2013):

Comparison Study of Lossless Data Compression

Algorithms for Text Data. IOSR Journal of Computer

Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN:

2278-8727Volume 11, Issue 6 PP 15-19

[5] Kodituwakku, S.R. and Amarasinghe, U. S. (2004)

Comparison of Lossless Data Compression Algorithms

For Text Data. Indian Journal of Computer Science and

Engineering Vol 1 No 4 416-426

[6] Mahesh V., Ekjot S. W. and Aditya G. (2014) Data

Compression Using Shannon-Fano Algorithm

Implemented by VHDL IEEE International Conference

on Advances in Engineering & Technology Research

(ICAETR - 2014), August 01-02, 2014,

[7] Komal S. and Kunal G. (2017) Lossless Data Compression

Techniques and Their Performance. International

Conference on Computing, Communication and

Automation (ICCCA2017)

[8]Shanmugasundaram S. and Lourdusamy, R. (2011): A

Comparative Study Of Text Compression Algorithms.

International Journal of Wisdom Based Computing, Vol.

1 (3), December 2011.

[9] James J. and Pe, A. (2015): Error Correction based on

Redundant Residue Number System 978-1-4799-9985-

9/15/$31.00 ©2015 IEEE

[10] Gbolagade, K. A.; Cotofana, S. D. (2008). Residue

Number System Operands to Decimal Conversion for 3-

Moduli Sets [IEEE 2008 51st IEEE International

Midwest Symposium on Circuits and Systems (MWSCAS)

- Knoxville, TN, USA (2008.08.10-2008.08.13)] 2008

51st Midwest Symposium on Circuits and Systems -

Residue Number System operands to decimal conversion

for 3-moduli sets. , (), 791–794.

[11] Molahosseini, A. S. and Sousa L. (2017): Introduction to

Residue Number System: Structure and Teaching

Methodology.

[12] Sousa, L. Efficient method for magnitude comparison in

RNS based on two pairs of conjugate moduli.

Proceedings of the 18th IEEE Symposium on Computer

Arithmetic, 2007.

[13] Gbolagade, K. A.; Chaves, R.; Sousa, L.; Cotofana, S. D.

(2010). An Improved RNS Reverse Converter for the

{22n+1 −1,2n ,2n −1} Moduli Set, [IEEE 2010 IEEE

International Symposium on Circuits and Systems -

ISCAS 2010 - Paris, France.

[14] Aremu, I. A. and Gbolagade, K. A. (2017): Redundant

Residue Number System Based Multiple Error Detection

and Correction Using Chinese Remainder Theorem.

Software Engineering. ISSN2376-8029(Print) 2376-8037

(online)5(5):pg 72-80.

0

20

40

60

80

100

120

3888 4224 7976 8984 11056 13120

Shannon Fano(bits)

RNS-Shannon Fano size (bits)

