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ABSTRACT 

Two-level time series models are commonly used to analyze 

longitudinal and correlated data with the standard and 

parametric assumption that the within-individual (level-1) 

residuals are uncorrelated rarely checked. There is marked 

disagreement in the literature as to whether such parametric 

assumption is important or innocuous. Monte Carlo methods 

were used to examine the conditions in which the level-1 

independence of observations assumption on the parameter 

estimates of fixed effects was violated and the associated 

errors due to mean square were investigated. Conditions also 

varied the series lengths, the numbers of participants per 

study, and the strength of the autocorrelation coefficient. The 

simulation results, under the finite sampling properties of 

Mean Squared Error (MSE), Shown that in finite data, the 

maximum likelihood estimates may be substantially biased 

and possess mean square errors substantially higher than 

Cramer-Rao bounds.  
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1. INTRODUCTION 
The analysis of change is a fundamental component of so 

many research endeavours in almost every discipline. Our 

general idea inferred about change and its measurement, 

whether the developing traits under study are physiological, 

morphological, psychological or behavioural, remains a 

challenging area [1]. Although philosophical discussions of 

change have been traced back as far as Aristotle [2], various 

approaches used earlier to investigate change were very 

limited in that (a) only two occasions of measurement are 

addressed and (b) they focused exclusively either on 

measurement occasion level or on subject-level growth, 

resulting in data gap too scanty to allow examination of some 

of the most basic and interesting hypotheses about change 

over time to be tested [3]. Many longitudinal studies are 

designed to investigate changes over time in a characteristic 

which is measured repeatedly for each study participant, such 

as clinical trial in which patients are randomly assigned to 

different treatments and repeatedly evaluated over the course 

of the study. When measurements are repeated on the same 

subjects e.g., animals or students, a 2-level hierarchy is 

established with measurement repetitions or occasions as level 

1 units and subjects as level 2 units. In most cases, the 

multiple observations are taken over time, but they could be 

over space, such data are referred to as 'repeated measures' or 

clustered data. A multilevel problem which concerns a 

population with a hierarchical structure were designed to 

analyze repeated measures data and the analysis of such data 

can be conducted efficiently using a two-level model. price of 

such a powerful model for treating hierarchically structured 

data is the requirement of a set of strong mathematical 

assumptions whose conditions are expected to be violated to 

some degree in actual studies. As with other statistical 

techniques, the assumptions of MLM must be valid in order 

for the estimates and associated significance tests to have the 

desired properties. 

 In some cases, especially where measurements are made 

close together in time, often the error term is not independent 

through time. Instead, the errors are serially correlated or 

autocorrelated. If the error term is autocorrelated, the 

efficiency of ordinary least-squares (OLS) parameter 

estimates is adversely affected and standard error estimates 

are biased due to failure to account for the correlated structure 

of observations [4]. Multilevel models can accommodate 

nonindependence of observations, a lack of sphericity, 

missing data, small and/or discrepant group sample sizes, and 

heterogeneity of variance across repeated measures [5]. As 

with most statistical models, an important assumption of 

MLM is that the level-1 errors (eij) are independently and 

normally distributed with a mean of 0 and a variance of  σ2 

[6]. Multilevel models are used with repeated measures data 

to accommodate the fixed effects of covariates and the 

covariation between observations on the same subject at 

different times [7]. One of the main reasons we moved to 

multilevel models rather than just working with linear models 

was to resolve non-independencies in our data, however, 

multilevel models can still violate independence. In this paper, 

we assume data on different subjects are independent, and for 

simplicity, we assume there are t measurements at the same 

equally spaced times on each subject. 

Inferential Settings 

In ordinary regression analysis, in the case of severe 

violations, a variety of statistical methods for correcting 

nonindependence according to Garson (2013) include analysis 

of variance and other general linear model (GLM) methods 

that have been adapted to handle non-independence, but these 

adaptations are problematic. In estimating model parameters 

when there are random effects, it is necessary to adjust for the 

covariance structure of the data. The adjustment made by 

GLM assumes uncorrelated error (that is, it assumes data 

independence) [8]. Also another method for correcting 

autocorrelation include modeling the serial correlation 

explicitly using some error autocorrelation formulation, say an 

AR(1) process, and then use the generalized least square 

(GLS) to estimate the Autocorrelation-Corrected [9].  

In multilevel models, specification assumptions apply at each 

level. Moreover, misspecification at one level can affect 
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results at other levels. In most multilevel applications, the 

errors in the level-1 model are assumed to have equal 

variance, σ2. According to [10], if the level-1 variance varies 

randomly over level-2 units, but these variances are assumed 

equal, consequences for inference about the level-2 

coefficients will be mild, on the other hand if the =variances 

depend systematically as a function of level-1 or level-2 

predictors, consequences may be more serious. Because 

causes of heterogeneity are quite different in their 

implications, it is strongly advocated to investigate possible 

sources of heterogeneity and model it if found.  

Finally, it must be emphasized that failure to adequately 

account for correlation among repeated measures can result in 

misleading inferences. For instance, if it is assumed that the 

repeated measures are uncorrelated when in fact there is 

strong positive correlation, the nominal standard errors 

(resulting from the naive assumption of independence or 

uncorrelated repeated measures) will be incorrect [11]. 

Autocorrelated data are very common for time ordered data, 

hence, statistical analysis of repeated measures data must 

address the issue of covariation between measures on the 

same unit. A key argument being made is that a systematic 

study investigating the effects of this violation is important 

and, therefore, addressed in this paper. 

The main question to be answered in this paper is, what is the 

effect of error due to mean square on the efficiency of 

maximum likelihood (ML) parameters estimates as a result of 

autocorrelation. Related questions are whether or not the 

severity of this effect is influenced by the number of 

measurement occasions, the degree of autocorrelation and the 

number of subjects. The first two conditions are chosen 

because when the model includes both random intercepts and 

slopes (or randomly varying coefficients for any functions of 

time), the variability of the response can change as a function 

of the times of measurement, and the magnitudes of the 

correlations between measurements from the same individual 

can depend on the time between them.   

We ask that authors follow some simple guidelines. In 

essence, we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to download 

the template, and replace the content with your own material.  

2. MODEL CONCEPTS 
Consider a simple linear regression model for the 

measurement Y of individual 

i  i = 1, 2, ⋯ , N subjects  on occasion  j   j =
1, 2,  ⋯ n occasions,  

     Yij = β0 + β1Xij + eij                    

 (1)                        

Ignoring subscripts, this model represents the regression of 

the outcome variable Y on the independent variable time 

(denoted X). The subscripts keep track of the particulars of the 

data, namely whose observation it is (subscript) and when this 

observation was made (the subscript j). The independent 

variable X gives a value to the level of time, and may 

represent time in weeks, months, etc. Since Y  and X carry 

both i and j subscripts, both the outcome variable and the time 

variable are allowed to vary by individuals and occasions. 

In linear reg=ression models, like (1), the errors eij are 

assumed to be normally and independently distributed in the 

population with zero mean and common variance σ2. This 

independence assumption makes the model given in equation 

(1) an unreasonable one for repeated measure data. This is 

because the outcomes Y are observed repeatedly from the 

same individuals, and so it is much more reasonable to 

assume that errors within an individual are correlated to some 

degree. Furthermore, the above model posits that the change 

across time is the same for all individuals since the model 

parameters (β0, the intercept or initial level, and β1, the linear 

change across time) do not vary by individuals. For both of 

these reasons, it is useful to add individual-specific effects 

into the model that will account for the data dependency and 

describe differential time trends for different individuals. This 

is precisely what Multilevel Time Series Models for repeated 

data do. 

Estimations of repeated measures data are facilitated by using 

a multi-level model approach, which allows the estimation of 

within-individual (level-1) and between-individual (level-2) 

variations in outcomes. At first, we established a regression 

equation for the first level variables, in which the tracking 

results that came from different observation times were the 

first layer and the invariant individual characteristics were the 

second layer data. 

In the first floor of the data structure, the track observation 

result was considered as the dependent variable. 

𝑌𝑖𝑗 = 𝛽𝑜𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗         (2) 

In a two-level model each term has two subscripts, the first of 

which corresponds to level 1 while the second refers to level 

2. As in "(2)", subscript "0" means intercept, subscript "1" 

means slope, subscript "i" means the i-th observation object, 

Subscript "j" indicates the j-th observation time. 

"𝛽𝑜𝑗 " is the intercept of the equation, it indicates the average 

of the 𝑖‐ 𝑡ℎ observed objects.  

 "𝛽1𝑗 " is the regression coefficient, it indicates the changing 

rate of the 𝑖‐ 𝑡ℎ observation object. 

 "𝑋𝑖𝑗 " means the values of the variable 𝑋 when the 𝑖‐ 𝑡ℎ 

observed object is in the 𝑗‐ 𝑡ℎ observation time. 

  "𝑒𝑖𝑗 " means residual, the implication is that the measured 

value 𝑌 of the 𝑖‐ 𝑡ℎ object in the 𝑗‐ 𝑡ℎ observation time that 

cannot be explained by the independent variable 𝑋. 

Equation (2) is similar to the general regression equation, the 

only difference is, intercept and slope are not constant. 

 In the second layer of the data structures, the 

intercept and slope are used as the dependent variable in (2), 

and individual characteristics are considered as independent 

variables, the we create two regression equations for the 

second layer: 

 
𝛽𝑜𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + u0𝑗                                       (3)

𝛽1𝑗 = 𝛾10 + 𝛾11𝑊𝑗 + u1𝑗                                       (4)
  

where  
𝑌𝑖𝑗 =  𝛽0𝑗  + 𝑒𝑖𝑗

  𝛽𝑜𝑗  = 𝛾00 + 𝑢0𝑗  
                                  (5) 

is referred to as the null model.  

In equations (3) and (4), each parameter has two subscripts, if 
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the first subscripts is "0", this is the parameter that relates to 

the intercept of (2). if the first subscript is "1", this is the 

parameter that relates to the slope of (2). if the second 

subscripts is "0", it means the intercept part of the second 

layer equation, if the second subscript is "1", it means the 

slope part of the second layer equation. 

𝛾00  is the intercept of (3), it can be understood as the average 

of the dependent variable Y when the independent variable 

𝑊𝑗  is 0. 

𝑊𝑗  is the value on the level-2 predictor 

   𝛾01  is the regression coefficients of the variables 𝑊𝑗   in 

(3), it can be understood as the impact of the variable 𝑊𝑗  to 

the initial value of the dependent variable Y. 

 𝛾10  is the intercept of (4), it can be understood as the 

changing rate of observed object when the variable 𝑊𝑗  is 0. 

𝛾11  is the regression coefficient of the variable 𝑊𝑗   in (4), it 

can be understood as the effect of the variable 𝑊𝑗  on the 

changing rate.  

𝑢0𝑗  is the residual of (3), is the intercept deviation for subject 

𝑖, it represents the influence of individual 𝑖 on his or her 

repeated observations. 

𝑢1𝑗  is the residual of (4) is the slope deviation for subject 𝑖 

The assumption regarding the independence of the errors is 

one of conditional independence, that is, they are independent 

conditional on 𝑢0𝑗  and 𝑢1𝑗 . 

Our model (2) with one time-level and one individual level 

explanatory variable can be written as a single complex 

multilevel time series regression equation by  

Substituting  𝛾00 + 𝛾01𝑊𝑗 + u0𝑗  for 𝛽0𝑗 , and 

Substituting 𝛾10 + 𝛾11𝑊𝑗 + u1𝑗   for 𝛽1𝑗 , and 

redistributing, we have: 

𝑌𝑖𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + u0𝑗 + 𝛾10𝑋𝑖𝑗 +

𝛾11𝑊𝑗𝑋𝑖𝑗  + u1𝑗𝑋𝑖𝑗  + 𝑒𝑖𝑗        (6) 

Rearranging, so that the fixed effects appear first, followed by 

the random effects, leads us to our final mixed model, defined 

as 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝛾11𝑋𝑖𝑗𝑊𝑗 +

𝑢1𝑗𝑋𝑖𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗      (7) 

[13] remarks that " In order to allow for the classification of 

variables and coefficients in terms of the level of hierarchy 

they affect, a combined model is created by rearranging so 

that the fixed effects appear first, followed by the random 

effects. 

The term 𝑋𝑖𝑗𝑊𝑗  is an interaction term that appears in the 

model because of modeling the varying regression slope 𝛽1𝑗  

of the time-level variable 𝑋𝑖𝑗  with the individual level 

variable 𝑊𝑗 .  

In equation (7), the errors are no longer independent across 

the level units. The terms  𝑢0𝑗  and 𝑢1𝑗  demonstrate that 

there is dependency among the level-1 units nested within 

each level-2 unit. Furthermore, 𝑢0𝑗  and 𝑢1𝑗  may have 

different values within level-2 units, leading to heterogeneous 

variances of the error terms [6]. That is (7) shows that the 

composite error structure,  𝑢1𝑗𝑋𝑖𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗  is now 

clearly heteroscedastic since it is conditioned on level of the 

explanatory variable. 

3. METHODS 
The simulation model and procedure 

We use two different simple two-level models, with one 

explanatory variable each at the individual level and one 

explanatory variable at the subject level, conforming to 

equation (7) above.  The model used in the process of 

generating data for the present study is the first model shown 

below with W replaced by Z, which henceforth will be 

referred to as autocorrelated model. 

Level-1:  𝑌𝑖𝑗 = 𝛽𝑜𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗           (2 repeated) 

Level-2:  𝛽0𝑗 = 𝛽0 + 𝛽01𝑍𝑗 + 𝚞0𝑗          (8) 

                𝛽1𝑗 = 𝛽1 + 𝛽11𝑍𝑗 + 𝚞1𝑗          (9) 

 𝑒𝑖𝑗 ∼ 𝑁 0,σ2Ωk .  

Thus, 𝑉 𝑦𝑖 =  𝑍𝑖𝛴𝜐𝑍𝑖
′ + σ2Ωk              (10)        

where Ωk  depends on q autocorrelation parameters, with q 

varying depending on the type of autocorrelated error 

structure being considered. 

The motivation lies in the need to allow for patterns of 

dependence, rather than complete independence among 

response values. The simplest way to allow such dependence 

is to assume  𝑉 𝑦𝑖 =  𝑍𝑖𝛴𝜐𝑍𝑖
′ + σ2Ωk  with Ωk  of 

dimension 𝑁 × 𝑁, symmetric and positive definite or semi 

positive definite (which allows any covariance matrix).  

The second model is given below, which will henceforth be 

referred to as standard model.  

Level-1:  𝑌𝑖𝑗 = 𝛽𝑜𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗             (2 repeated) 

Level-2:  𝛽0𝑗 = 𝛽0 + 𝛽01𝑍𝑗 + 𝚞0𝑗              (8 repeated) 

                𝛽1𝑗 = 𝛽1 + 𝛽11𝑍𝑗 + 𝚞1𝑗              (9 repeated) 

 𝑒𝑖 ∼ 𝑁 0,σ2I  

Thus,𝑉 𝑦𝑖 =  𝑍𝑖𝛴𝜐𝑍𝑖
′ + σ2I                      (11) 

 

Estimation methods for variance components   

For the purpose of this study, used were made of R program 

to estimate the parameters. The estimation methods are 

compared in relation to the number of subjects, number of 

measurement occasion, and autocorrelation coefficient under 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 
Foundation of Computer Science FCS, New York, USA 
Volume 7 – No. 38, February 2022 – www.caeaccess.org 

 

4 

the following conditions: 

I. autocorrelation coefficients of 0.3, 0.7, 0.99 

II. variances of intercept and slopes and their covariances 

of – 12.63, 2.08 and -1.42 respectively 

III. numbers of subjects – 30, 50, and 100 

IV. numbers of observation within subjects –3, 5, and 10 

V. 1000 replication for each condition 

For the regression coefficients, 1.00 was chosen for the 

intercept, and 0.3 for all the regression slopes (medium effect 

size; see [13]; [14]. The first level variance 𝜎2
was fixed at 

12.22, while the error terms in the simulated data are auto 

regressively correlated. The sizes of the conditions are 

partially based on literature and partially on practical 

experience. 

4. RESULTS 

4.1 Coverage 
In order to investigate the influence of the number of subjects, 

the autocorrelation coefficients and the number of 

measurement occasions on the estimation of error due to mean 

square on the parameter estimates, the coverage per condition 

was calculated to describes the uncertainty inherent in our 

estimate, and describes a range of values within which we can 

be reasonably sure that the true effect actually lies. The results 

are as shown below. 

Table 1: Full Maximum Likelihood Parameter Estimates and Wald 95% Confidence Intervals (CIs) Obtained by Fitting 

Model with Autocorrelated Errors. 

ML/COMB 
ML SLOPES  

(Estimate) 
VAR. SLOPES STD DEV SLOPES 

95% CI 

(LOWER) 

95% CI 

(UPPER) 

3, 0.3, 30 -0.3267 2.2146 1.4882 -3.2434 2.5901 

5, 0.3, 30 -0.2107 2.1143 1.4541 -3.0606 2.6393 

10, 0.3, 30 0.0331 2.0855 1.4441 -2.7974 2.8636 

3, 0.7, 30 -0.4429 2.1283 1.4589 -3.3022 2.4165 

5, 0.7, 30 -0.3591 2.0942 1.4472 -3.1955 2.4773 

10, 0.7, 30 0.3363 2.0830 1.4433 -2.4925 3.1651 

3, 0.9, 30 -0.4745 2.0946 1.4473 -3.3111 2.3622 

5, 0.9, 30 -0.3867 2.0844 1.4437 -3.2164 2.4431 

10, 0.9, 30 0.4070 2.0810 1.4426 -2.4205 3.2344 

3, 0.3, 50 0.6721 2.1605 1.4698 -2.20879 3.5530 

5, 0.3, 50 0.4776 2.1005 1.4493 -2.3630 3.3183 

10, 0.3, 50 1.2309 2.0833 1.4434 -1.5981 4.0599 

3, 0.7, 50 0.7294 2.1088 1.4522 -2.1168 3.5757 

5, 0.7, 50 0.6169 2.0885 1.4451 -2.2156 3.4494 

10, 0.7, 50 1.6538 2.0818 1.4428 -1.1742 4.4818 

3, 0.9, 50 0.7547 2.0887 1.4452 -2.0779 3.5873 

5, 0.9, 50 0.6361 2.0826 1.4431 -2.1925 3.4646 

10, 0.9, 50 1.7345 2.0806 1.4424 -1.0927 4.5616 

3, 0.3, 100 0.8482 2.1201 1.4561 -2.0057 3.7021 

5, 0.3, 100 1.1363 2.0902 1.4458 -1.6974 3.9700 

10, 0.3, 100 0.5546 2.0817 1.4428 -2.2733 3.3824 

3, 0.7, 100 0.9212 2.0943 1.4472 -1.9153 3.7577 

5, 0.7, 100 1.2759 2.0842 1.4437 -1.5537 4.1055 

10, 0.7, 100 0.6573 2.0809 1.4425 -2.1701 3.4846 

3, 0.9, 100 0.9541 2.0843 1.4437 -1.8756 3.7838 

5, 0.9, 100 1.2959 2.0813 1.4427 -1.5318 4.1235 

10, 0.9, 100 0.6758 2.0803 1.4423 -2.1512 3.5027 
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Table 2: Restricted Maximum Likelihood Parameter Estimates and Wald 95% Confidence Intervals (CIs) Obtained by Fitting 

Model with Autocorrelated Errors. 

REML/COMB 
REML SLOPES  

(Estimate) 
VAR. SLOPES STD DEV SLOPES 

95% CI  

(LOWER) 

95% CI 

(UPPER) 

3, 0.3, 30 -0.3172 2.2353 1.4951 -3.2475 2.6132 

5, 0.3, 30 -0.2183 2.1229 1.4570 -3.0741 2.6374 

10, 0.3, 30 0.0301 2.0887 1.4453 -2.8025 2.8628 

3, 0.7, 30 -0.4328 2.1357 1.4614 -3.2971 2.4316 

5, 0.7, 30 -0.3653 2.0978 1.4484 -3.2042 2.4735 

10, 0.7, 30 0.3314 2.0848 1.4439 -2.4986 3.1614 

3, 0.9, 30 -0.4642 2.0968 1.4480 -3.3024 2.3740 

5, 0.9, 30 -0.3928 2.0855 1.4441 -3.2233 2.4377 

10, 0.9, 30 0.4016 2.0815 1.4428 -2.4262 3.2294 

3, 0.3, 50 0.6838 2.1674 1.4722 -2.2018 3.5693 

5, 0.3, 50 0.4649 2.1033 1.4503 -2.3776 3.3075 

10, 0.3, 50 1.2259 2.0842 1.4437 -1.6037 4.0556 

3, 0.7, 50 0.7407 2.1113 1.4530 -2.1072 3.5886 

5, 0.7, 50 0.6050 2.0896 1.4456 -2.2283 3.4383 

10, 0.7, 50 1.6475 2.0823 1.4430 -1.1808 4.4758 

3, 0.9, 50 0.7658 2.0894 1.4455 -2.0673 3.5990 

5, 0.9, 50 0.6244 2.0830 1.4432 -2.2044 3.4531 

10, 0.9, 50 1.7278 2.08074 1.4425 -1.0994 4.5551 

3, 0.3, 100 0.8575 2.1218 1.4566 -1.9975 3.7125 

5, 0.3, 100 1.1347 2.0909 1.4460 -1.6994 3.9689 

10, 0.3, 100 0.5519 2.0819 1.4429 -2.2761 3.3799 

3, 0.7, 100 0.9304 2.0949 1.4474 -1.9064 3.7673 

5, 0.7, 100 1.2734 2.0845 1.4438 -1.5564 4.1032 

10, 0.7, 100 0.6531 2.0810 1.4426 -2.1744 3.4805 

3, 0.9, 100 0.9633 2.0845 1.4438 -1.8665 3.7931 

5, 0.9, 100 1.2931 2.0814 1.4427 -1.5345 4.1208 

10, 0.9, 100 0.67133 2.0803 1.4423 -2.15569 3.4982 
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Figure 1:Full Maximum Likelihood Parameter Estimates and Wald  95% 

Confidence Intervals (CIs) Obtained by Fitting Model with Autocorrelated 

Errors.
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Table 3: Full Maximum Likelihood Parameter Estimates and Wald 95% Confidence Intervals (CIs) Obtained by Fitting 

Standard Multilevel Model. 

MLI/COMB 
MLI SLOPES  

(Estimate) 
VAR. SLOPES STD DEV SLOPES 

95% CI  

(LOWER) 

95% CI 

(UPPER) 

3, 0.3, 30 -0.1629 2.2837 1.5112 -3.1248 2.7990 

5, 0.3, 30 -0.0521 2.1207 1.4563 -2.9064 2.8022 

10, 0.3, 30 -0.1884 2.0849 1.4439 -3.0185 2.6417 

3, 0.7, 30 -0.1106 2.2837 1.5112 -3.0725 2.8513 

5, 0.7, 30 -0.0670 2.1207 1.4563 -2.9213 2.7873 

10, 0.7, 30 -0.1770 2.0849 1.4439 -3.0071 2.6531 

3, 0.9, 30 -0.0844 2.2837 1.5112 -3.0463 2.8775 

5, 0.9, 30 -0.0745 2.1207 1.4563 -2.9288 2.7798 

10, 0.9, 30 -0.1712 2.0849 1.4439 -2.0013 2.6589 

3, 0.3, 50 0.6542 2.2022 1.4840 -2.2544 3.5628 

5, 0.3, 50 0.2743 2.1044 1.4507 -2.5690 3.1176 

10, 0.3, 50 0.8867 2.0830 1.4432 -1.9421 3.7154 

3, 0.7, 50 0.6775 2.2022 1.4840 -2.2311 3.5861 

5, 0.7, 50 0.2710 2.1044 1.45067 -2.5723 3.1143 

10, 0.7, 50 0.8901 2.0830 1.4432 -1.9387 3.7188 

3, 0.9, 50 0.6891 2.2022 1.4840 -2.2195 3.5977 

5, 0.9, 50 0.2694 2.1044 1.4507 -2.5739 3.1127 

10, 0.9, 50 0.8918 2.0830 1.4432 -1.9370 3.7205 

3, 0.3, 100 0.8299 2.1411 1.4632 -2.0380 3.6979 

5, 0.3, 100 0.9397 2.0922 1.4465 -1.8953 3.7748 

10, 0.3, 100 0.4663 2.0815 1.4427 -2.3615 3.29407 

3, 0.7, 100 0.8781 2.1411 1.4632 -1.9899 3.7460 

5, 0.7, 100 0.9402 2.0922 1.4465 -1.8948 3.7752 

10, 0.7, 100 0.4656 2.0815 1.4427 -2.3622 3.2934 

3, 0.9, 100 0.90214 2.1411 1.4632 -1.9658 3.7701 

5, 0.9, 100 0.9404 2.0922 1.4465 -1.8946 3.7755 

10, 0.9, 100 0.4652 2.0815 1.4427 -2.3625 3.29301 
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Figure 2:Restricted Maximum Likelihood Parameter Estimates and Wald  

95% Confidence Intervals (CIs) Obtained by Fitting Model with 

Autocorrelated Errors.
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Table 4: Restricted Maximum Likelihood Parameter Estimates and Wald 95% Confidence Intervals (CIs) Obtained by Fitting 

Standard Multilevel Model. 

REMLI/COMB 
REMLI SLOPES  

(Estimate) 
VAR. SLOPES STD DEV SLOPES 

95% CI 

(LOWER) 

95% CI 

(UPPER) 

3, 0.3, 30 -0.1257 2.3150 1.5215 -3.1079 2.8564 

5, 0.3, 30 -0.0414 2.1309 1.4598 -2.9026 2.8197 

10, 0.3, 30 -0.1930 2.0878 1.4449 -3.0251 2.6390 

3, 0.7, 30 -0.0734 2.3150 1.5215 -3.0555 2.9088 

5, 0.7, 30 -0.0563 2.1309 1.4598 -2.9175 2.8048 

10, 0.7, 30 -0.1816 2.0878 1.4449 -3.0136 2.6505 

3, 0.9, 30 -0.0472 2.3150 1.5215 -3.0294 2.9350 

5, 0.9, 30 -0.0638 2.1309 1.4598 -2.9249 2.7974 

10, 0.9, 30 -0.1759 2.0878 1.4449 -3.0079 2.6562 

3, 0.3, 50 0.6578 2.2128 1.4876 -2.2578 3.5734 

5, 0.3, 50 0.2707 2.1078 1.4518 -2.5749 3.1162 

10, 0.3, 50 0.8855 2.0838 1.4435 -1.9439 3.7148 

3, 0.7, 50 0.6811 2.2128 1.4876 -2.2345 3.5967 

5, 0.7, 50 0.2674 2.1078 1.4518 -2.5782 3.1129 

10, 0.7, 50 0.8889 2.0838 1.4435 -1.9405 3.7182 

3, 0.9, 50 0.6927 2.2128 1.4876 -2.2229 3.6083 

5, 0.9, 50 0.2657 2.1078 1.4518 -2.5799 3.1113 

10, 0.9, 50 0.8906 2.0838 1.4435 -1.9388 3.7199 

3, 0.3, 100 0.8229 2.1436 1.4641 -2.0468 3.69257 

5, 0.3, 100 0.9326 2.0930 1.4467 -1.9029 3.76821 

10, 0.3, 100 0.4671 2.08167 1.4428 -2.3608 3.2950 

3, 0.7, 100 0.8710 2.1436 1.4641 -1.9986 3.7407 

5, 0.7, 100 0.9331 2.0930 1.4467 -1.9025 3.7687 

10, 0.7, 100 0.4664 2.0817 1.4428 -2.3615 3.2943 

3, 0.9, 100 0.8951 2.1436 1.4641 -1.9746 3.7648 

5, 0.9, 100 0.9334 2.0930 1.4467 -1.9022 3.7689 

10, 0.9, 100 0.4660 2.0817 1.4428 -2.3619 3.2939 
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Figure 3:Full Maximum Likelihood Parameter Estimates and Wald  95% 

Confidence Intervals (CIs) Obtained by Fitting Standard Multilevel Model.
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Observations: Our goal here is to just get a sense for the data: 

What do the trajectories look like? Supposing we fit 

individual regressions, how do the regression coefficients vary 

across subjects?  Because the slope varies for individuals, the 

fitted model allows the possibility that some individuals do 

not change across time, while others can exhibit dramatic 

change. zero is within all of the prediction intervals on the 

random effects, that the interval we have constructed includes 

zero reflects the fact that there is considerable heterogeneity in 

terms of subjects change across time. By the value of the 

dispersion of the coefficients, some subjects are above the line 

of the overall average slope while others are below it, the 

variation around the average line (as indicated by the value of 

variances) is large, this implies that individuals’ slopes are not 

similar and cannot be modeled by the fixed-effect estimate. 

Wald simplest 95% confidence intervals (CI) on the estimated 

average slopes were constructed, by taking the point estimate 

±1.96 estimated standard errors in order to determine 

lopsidedness of coverage resulting from errors due to mean 

square and find the influence of the number of subjects, the 

autocorrelation coefficient and the number of measurement 

occasions on the constructed CI for the parameter estimates. 

More specifically, when using the Wald Confidence Interval, 

two points on either side of MLE are chosen such that they are 

equidistant from MLE value (MLE ± SE * (1-alpha)/2 

percentile of Normal distribution).  

The width of REML confidence interval estimates are wider 

than the ML confidence interval, but the differences are small. 

In standard multi-level model, combinations with same 

numbers of subjects and measurements occasion appear to 

have the same width as their prediction interval, this adds 

quite a bit to our understanding of the variability in our 

random coefficients. Also observed from the constructed 

confidence interval, there is lopsidedness of coverage 

resulting in estimates falling more frequently to one side than 

the other of the true parameter.  

To substantiate our claim, standard normal distribution was 

used to estimate the expected percentage of regression 

coefficients that are less than 0.3 under autocorrelated model 

(ML𝛺), and found to be within the range of 0.15% to 100%. 

Lopsidedness of coverage is a direct consequence of the bias 

in the multilevel point estimator, on which the Wald interval 

is centered. Despite this problem, multilevel Wald 95% 

intervals appear to provide conservatively valid (i.e. at least 

95%) average coverage for the parameter estimates (Sander, 

2000).  

In our constructed 95% confidence interval, subjects (level-2 

units) with low numbers of measurement occasion and low 

autocorrelation coefficients are predicted to have a wider 

confidence interval than subjects with high numbers of 

measurement occasion and high autocorrelation coefficient. 

Similarly, differences between the number of subjects indicate 

relationship between the width of the confidence interval. Not 

surprising, intercept and slope coefficients are random 

variables that vary across subjects, the specific values for the 

intercept and slope coefficients are subjects characteristics. 

4.2 Evaluating Mean Square Error 
For the assessment of the parameter estimates, the mean 

square due to error for each parameter was considered and the 

results are as shown below; 

Table 5: Comparing the MSE of slopes for measurement occasion, t = 3 for two estimators under standard and correlated 

models, for different numbers of subject N and different autocorrelation coefficient as a function of the slope. 

               ML (𝛺)              REML (𝛺) ML  𝑰  REML  𝑰  
N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9 

30 0.4082 0.5675 0.6155 0.3983 0.5546 0.6018 0.2330 0.1873 0.1665 0.1975 0.1556 0.1368 

50 0.1484 0.1945 0.2168 0.1593 0.2063 0.2291 0.1335 0.1505 0.1594 0.1372 0.1544 0.1634 

100 0.3067 0.3921 0.4341 0.3143 0.4010 0.4436 0.2851 0.3385 0.3669 0.2786 0.3313 0.3594 

Where 𝛺 represents autocorrelation matrix and 𝐼 is the identity matrix. 
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Figure 4:Restricted Maximum Likelihood Parameter Estimates and Wald  

95% Confidence Intervals (CIs) Obtained by Fitting Standard Multilevel 

Model.
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Table 6: Comparing the MSE of slopes for measurement occasion, t = 5 for two estimators under standard and correlated 

models, for different numbers of subject N and different autocorrelation coefficient as a function of the slope. 

 ML (𝛺) REML (𝛺) ML  𝑰  REML  𝑰  
N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9 

30 0.2640 0.4381 0.4753 0.2735 0.4483 0.4857 0.1273 0.1381 0.1436 0.1191 0.1295 0.1349 

50 0.0345 0.1037 0.1163 0.0293 0.0955 0.1077 0.0026 0.0028 0.0029 0.0033 0.0035 0.0036 

100 0.7005 0.9537 0.9930 0.6978 0.9486 0.9875 0.4103 0.4109 0.4112 0.4014 0.4020 0.4023 

Where 𝛺 represents autocorrelation matrix and 𝐼 is the identity matrix. 
Table 7: Comparing the MSE of slopes for measurement occasion, t = 10 for two estimators under standard and correlated 

models, for different numbers of subject N and different autocorrelation coefficient   as a function of the slope. 

 ML (𝛺) REML (𝛺) ML  𝑰  REML  𝑰  

N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9   0.3 0.7 0.9 

30 0.0717 0.0021 0.0123 0.0733 0.0017 0.0112 0.2390 0.2279 0.2225 0.2434 0.2323 0.2268 

50 0.8668 1.8333 2.0583 0.8576 1.8161 2.0391 0.3444 0.3484 0.3504 0.3430 0.3470 0.3490 

100 0.0649 0.1279 0.1414 0.0636 0.1249 0.1381 0.0278 0.0275 0.0274 0.0280 0.0278 0.0277 

Where 𝛺 represents autocorrelation matrix and 𝐼 is the identity matrix.
Comment:  

As can be seen in Table 5 to Table 7, The violation of the 

first-level residual independence assumption has a major 

effect, as expected, on MSE of the estimates of the fixed 

effect. From the illustrating Tables 5-7, it was noticed that 

when the model was correctly specified (C-Model) the MSE 

for the fixed effect increased substantially (between 0.0021 

and 2.0583 for FML and between 0.0017 and 2.0391 for 

REML for slope). Similarly, by omitting correlation matrix 

(i.e., misspecified model), the MSE for the fixed effect 

increased substantially (between 0.0026 and 0.4112 for FML, 

and between 0.0033 and 0.4023 for REML respectively). For 

the C-Model, lowest MSE occurs at ρ = 0.7, while the highest 

occurs at ρ = 0.9 similarly, for S-Model, ρ = 0.3 for the lowest 

and 0.9 for the highest.  

In general, increasing autocorrelation level led to an increase 

in the MSE of the fixed effect estimates of the slope under 

correctly specified model except when N=30 which is not 

clearly defined. Similarly, increasing autocorrelation level led 

to an increase in the MSE of the fixed effect estimates of the 

slope under misspecified model when N=50 but not clearly 

defined for N=30, and 100. 

Moreover, as expected, increasing sample size decreased the 

MSE. However, this effect varied across conditions. To 

explain, when the model was correctly specified, increasing 

the sample sizes at both the first and second level decreased 

the MSE of the estimates for slope, particularly with increase 

measurement occasion (i.e., from t = 3 to 5 decreased MSE 

estimates from (0.4082, 0.5675, 0.6155) to (0.2640, 0.4381, 

0.4753) respectively across the values of autocorrelation 

coefficients under FML, Similarly,(from N=30 to 50) MSE 

decreased from (0.4082, 0.5675, 0.6155) to (0.1484, 0.1945, 

0.2168) under FML, t =  3, however, this effect varied across 

conditions under both models. There was an increase or 

decrease in MSE of the estimates of the fixed effect when 

either the number of measurement occasion or the number of 

subjects changed.  

The effect of non-autocorrelation assumption violation on the 

MSE of the estimates of some fixed effect parameters seemed 

to depend on the autocorrelation level and sample sizes at 

both levels. In general, the MSE for the estimates of the slope 

when t =5 were less than when t =3, and that of t =10 less than 

that of t =5.  

5. DISCUSSION AND CONCLUSION 
When the mean square error (MSE) of the estimators was 

contrasted across fixed effect estimates, the magnitude of 

MSE in the parameter estimates depends on the degree of 

correlation between subjects' data especially, under C-model 

compared to S-model.  MSE of parameter estimates quantify 

the sum of the variance and squared bias associated with each 

parameter. For biased outcomes, MSE can be interpreted as a 

measure of overall accuracy, combining both bias and 

accuracy of precision into a single value. From the results of 

our analysis, FML exhibits greater MSE when compared with 

REML MSE estimates, contrary to prior simulation and 

theoretical work that demonstrated that for some models, 

REML, though uniformly less bias than FML may exhibit 

greater MSE than FML as model complexity increases [15]. 

A necessary consequence of these facts with respect to the 

results of our study is that for two equally biased estimates, 

FML with less MSE, is a measure of efficiency upon which 

we would expect REML to outperform FML. Overall, the 

findings of the present study were consistent with those of 

previous studies with regard to the robustness of multilevel 

model to the violation of statistical assumptions.  

Conclusively, the estimation of level-2 fixed effects of subject 

characteristics is relatively robust with respect to the violation 

of non-autocorrelation assumption. This is an important 

finding, because violating non-autocorrelation assumption led 

to seriously inaccurate parameter estimates (high MSE values) 

for the second-level predictors and residuals. The precision of 

the fixed effects will be decreased with increase heterogeneity 

caused by autocorrelation which might lead to a widening 

confidence intervals. 
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