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ABSTRACT 

Presently, none of the current distributed (including grid and 

network) system simulators can offer the environment that can 

be directly used for modelling cloud computing environments 

and applications with high-performance rate, and maximum 

resource utilization. To overcome this challenge this research 

presents HiCloud: a new simulation framework that allows 

seamless modelling, simulation, and experimentation of 

emerging cloud computing infrastructures and application 

services. The developed system is a Cloudsim-based simulator 

that models cloud networks with minimum processing time and 

maximum resource utilization ratio. This research focuses on 

the resource utilization by using optimize execution time 

algorithm for service broker policy. It also takes into 

consideration the task migration approach for the load 

balancing algorithm that is used in the execution of tasks. The 

system was able to model cloud networks and application with 

high-performance metrics. The experimental results showed 

that the developed system has a better performance in terms of 

response time, execution time, makespan time and resource 

utilization ratio compared to existing systems.  

Keywords 
Simulation, Cloud Computing, Modeling, High Performance, 

Toolkit.  

 

1. INTRODUCTION  
The world is connected and more than two billion people 

connect to the Internet, the community of information 

technology has come up with a new service delivery 

mechanism called "Cloud Computing". Cloud computing is a 

new model that provides ubiquitous, convenient and on-

demand network access to a shared pool of configurable 

computing resources (e.g. networks, servers, storage, 

applications, and services) which can be rapidly provisioned 

and re-leased with little management effort or little service 

provider interaction [1]. The features of Cloud Computing 

include self-demand, comprehensive network access, resource 

pooling and scalability of resources. Cloud Computing 

provides services such as Software as a Service (SaaS), 

Platform as Service (PaaS) and Infrastructure as a Service 

(IaaS) and there are four types of Cloud models; Public Cloud, 

Private Cloud, Community Cloud and Hybrid Cloud [2][21]. 

Cloud infrastructure includes data centers that host servers and 

uses different levels of virtualisation techniques to offer cloud 

services [3][22].  

The design of a Data Center of the next generation is important 

because clouds aim to power the next-generation data centers 

as an enabling platform for dynamic and flexible application 

provisioning. This is done by exposing the data center’s 

capabilities as a network of virtual services (e.g. hardware, 

database, user-interface, and application logic) so that users can 

access and deploy applications from anywhere on the Internet-

driven by the demand and Quality of Service (QoS) 

requirements [4][5]. By using the clouds platform which holds 

application, IT companies are freed from the common task of 

setting up hardware and software infrastructures. Therefore, 

they can focus more on innovation and the creation of business 

values for their application services [5][23]. The Cloud 

Network design is carried out to evaluate and know the 

requirement of the cloud network to be implemented [24][25]. 

This design is represented as a network diagram to be 

implemented physically. A well-designed network minimises 

cost and optimises network bandwidth [6][7]. It is not possible 

to carryout benchmarking experiments in repeatable, reliable, 

and scalable environments using real-world Cloud 

environments. A better alternative is the use of simulation tools. 

These tools give room for the possibility of evaluating the 

hypothesis (application benchmarking study) in a well-

controlled environment whereby one can easily regenerate 

results. To evaluate the performance of Cloud provisioning 

policies, the software workload models and the resources 

performance models; in a repeatable manner under different 

system and user configurations and requirements is very 

difficult to obtain [26].   

To overcome this challenge, this research work presents 

HiCloud: A Cloudsim-based toolkit that enables modelling and 

simulation of the cloud computing system and behavioural 

modelling of Cloud components like data centers, virtual 

machines (VMs) and resource provisioning policies. The 

usefulness of HiCloud simulator is shown in a scenario 

involving the dynamic scheduling of tasks in the cloud 

environment. The result shows that the Cloud computing model 

reasonably improves the application QoS requirements under 

fluctuating resource and service demand patterns with 

minimum makespan time and maximum resource utilization. 

This paper is structured in the following order: In section 2, the 

previous works that are related to the proposed work are 

discussed. In section 3, HiCloud architecture is discussed. The 

proposed cloud system implementation and the result are 

analysed in section 4. Section 5 concludes the aim of the 

proposed work and its future work.  

 

2. RELATED WORKS  
There is a need for the development of a cloud computing 

simulator to model cloud environments and application testing 

with better performance features. [8] presented CloudSim: a 

toolkit that models and simulates cloud computing 

environments and evaluates resource provisioning algorithms. 
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The study was based on the need for tools to test the newly 

developed methods, policies and mechanisms to efficiently 

manage cloud infrastructures, and the need to evaluate the 

hypothesis before a real deployment in an environment, where 

one can reproduce tests. [9] presented CloudAnalyst: A 

cloudsim-based visual modeller that analyzes cloud computing 

environments and their applications. The study was carried out 

due to the lack of tools that enable developers to evaluate the 

requirements of large-scale cloud applications in terms of the 

geographic distribution of both computing servers and user 

tasks. [10] presented iCanCloud: A flexible and scalable cloud 

infrastructure simulator. The study was premised on the need 

for the tool to decide the best starting conditions on pay-as-you-

go scenarios. Based on this need iCanCloud was developed, a 

new simulator of cloud infrastructures with remarkable features 

such as flexibility, scalability, performance and usability.  

[11] presented a design of the network infrastructure of a cloud 

data center for use in the health sector of Arequipa city. The 

study was based on the need for a powerful and hardy data 

center to facilitate the provision of healthcare products and 

services to patients in remote areas and patients who have 

limited access to quality medical services. [12] presented 

designing and building a data center network: an alternative 

approach with OpenFlow. The research was based on the need 

for a new approach in which the network can be treated more 

dynamically, where VMs and other resources can be quickly 

and flexibly introduced, moved, or modified as needs change, 

without the need for manual intervention to reconfigure the 

network. [13] presented building a private HPC cloud for 

computing and data-intensive applications. They aimed at 

amplifying the improved resource utilization of cloud 

computing for HPC applications due to their insatiable resource 

needs. Cluster virtualization was used to achieve optimal 

compute and data-intensive applications in private HPC cloud 

developed.  

[14] presented the design and implementation of a peer-to-peer 

cloud system. The research is premised on maintaining a 

consistent structure over a set of unsecured computing 

resources. [6] presented dimensioning resilient optical grid / 

cloud networks.  

[3] worked on cloud computing workload and capacity 

management using domain-specific modelling. Domain-

specific modelling, model transformation, and time series 

analysis techniques with estimation algorithms were used to 

manage cloud computing workload and capacity. [7] presented 

the design of a government cloud network: case study Ondo 

state. A mathematical model was used to design the network, 

and specification from cloud management software was used to 

deploy AMD-Virtualised server. An established simulator 

(CloudSim and CloudAnalyst) was used to simulate the 

proposed G-Cloud that was designed.  

[15] presented an enhanced deadline constraints based tasks 

scheduling mechanism for the cloud environment. A 

scheduling system for deadline sensitive workload or lease was 

developed. [16] presented an extended intelligent water drop 

algorithm for workflow scheduling in the cloud computing 

environment. The new algorithm extends the natural-based 

Intelligent Water Drops (IWD) algorithm to optimize the 

scheduling of workflows over the cloud. [17] presented a new 

cost-efficient approach for deadline-constrained workflow 

scheduling by dynamic provisioning of resources. In this work 

a new approach for dynamic provisioning of resources and a 

workflow scheduling algorithm that is cost-efficient and 

deadline-constrained was invented. [18] presented genetic-

based algorithms applied to a workflow scheduling algorithm 

with security and deadline constraints in clouds.  

[19] presented simulation modelling of cloud computing for the 

smart grid using cloudsim. A smart grid cloud was simulated 

using CloudSim. [20] worked on efficient task scheduling for 

a-budget constraint parallel applications on heterogeneous 

cloud computing systems. The research work shows that the 

preassignment of tasks with the minimum cost does not 

necessarily lead to the minimization of the schedule length. We 

have proposed the development of HiCloud, a high-

performance toolkit for modelling and simulating cloud 

computing environment and applications.  

3. METHODOLOGY  

3.1 System Architecture  
HiCloud is a CloudSim-based simulator that models and 

simulates cloud environments and application. It has a 

graphical user interface with some extensions of models for 

better performance. It was developed in java programming 

language and run through JCreator IDE. HiCloud can define 

simulation with a high degree of configuration and it is very 

flexible. The architecture of HiCloud simulator is shown in Fig. 

1. 

Fig 1: HiCloud Architecture 

 

3.1.1 CloudSim Toolkit  
CloudSim toolkit supports both system modelling and 

behaviour modelling of cloud infrastructures such as data 

centers, virtual machines and as well as resource provisioning 

policies. The data center entity controls several host entities. 

The host is a CloudSim component that represents a physical 

computing server in a cloud network. CloudSim supports 

simulation scenarios that assign specific CPU cores to specific 

VMs (a space-shared policy), dynamically distribute the 

capacity of a core among VMs (time-shared policy), or assigns 

cores to VMs on demand. HiCloud components are modelled 

into three main layers in the input phase.  Layer 1 is the main 

configuration layer, layer 2 is the data center configuration 

 

 GUI CloudSim Extension 

CloudSim Toolkit 

HiCloud 
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layer and layer 3 is the advance layer. Values inputted in 

models in these three layers were simulated and then generated 

metrics such as average execution time, average response time, 

average makespan time and average utilization ratio. The 

overview of HiCloud layered architecture is shown in Fig. 2.  

3.1.2 Layer 1 of HiCloud  
Layer 1 is the main configuration class. This class contains the 

simulation duration class, user bases class, service broker 

policy class and the application deployment configuration 

class. In the simulation class, the simulation time was modelled 

as 60 seconds. The user bases class modelled a group of users 

as an entity UB1, UB2, UB3 and UB4. Regions of different 

user bases were modelled as region 0, region 1, region 2 and 

region 3. The request of users per hour was modelled as 60 

requests per user base, data size per request was modelled as 

100, the peak hour start time was modelled as 8am, and the 

peak hour end was modelled as 6pm as shown in Figure 6. 

Fig 2: HiCloud Layer Architecture 

 

The service broker policy class modelled an optimize execution 

time algorithm where tasks are allocated to the data center that 

has minimum execution time for fast response time. This 

execution time is calculated ahead. Fig. 4 shows the optimize 

execution time algorithm.  

The application deployment configuration class modelled the 

parameters of virtual machines for executing task or services 

requested by users.  

The service broker algorithm in Fig. 3 shows the detailed steps 

needed to perform optimize execution time algorithm. Finish 

time cannot be calculated before the task is executed so the 

expected finish time is calculated depending on the executable 

length (million instructions) and the server processor speed. 

The value gotten is used to calculate the expected finish time 

as follows:  

1. The task arrives in the form of an Internet cloudlet and the 

size of the task is defined by its Executable instruction length 

(MI) and size (MB).  

2. The resources (DCs) are defined by their processing speed 

(MIPS) and bandwidth (Mbps).  

3. To schedule n tasks (T1, T2, T3…. Tn) onto m available 

resources (R1, R2, R3…. Rm), the expected time to process 

tasks on each of the resources is calculated using Equation 1.  

 

  𝑇𝑖𝑗 = 𝑒𝑖𝑗 + 𝑟𝑗                                          (1)  

where 𝑇𝑖𝑗 denotes the expected running time of task i on 

resource j, 𝑒𝑖𝑗 denotes the execution time of the task 𝑖 on 

resource 𝑗, 𝑟𝑗 denotes the ready time of the resource 𝑗.  

4. So each entity of the ETM matrix is computed as that 

equation then the algorithm chooses the entity with the min 

value, and according to that value assigns tasks to the right data 

center.  

Response time is the processing time plus the cost of the request 

or the task transmission time, queued through the network 

nodes.  

Given that the expected response time, 

 

 𝑡𝑖𝑚𝑒 = 𝐹 − 𝐴 + 𝑇𝑑𝑒𝑙𝑎𝑦                         (2)  

where 𝐹  denotes the time to complete the task, 𝐴 denotes the 

arrival time of the task. The algorithm only affects the 

processing time in a local environment of the data center. 

Therefore, the communication delay parameter can be omitted, 

hence 𝑇𝑑𝑒𝑙𝑎𝑦= 0. 
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Input: a set of tasks, m data centers, ETM matrix. 

Output: the schedule plan 

Initiate the task set B. 

While there are tasks not assigned do 

    Update task set B. 

        For i:task 𝑣𝑖 do 

          Pull all Data centers status. 

          Get the earliest resource available time. 

          Find the Datacenter 𝐷𝑚𝑖𝑛(𝑣𝑖) giving the earliest finish time of 𝑣𝑖.  

       End For 

       Find the task-Data center pair (𝑣𝑘 , 𝐷𝑚𝑖𝑛(𝑣𝑘)) with the earliest finish time. 

       Assign the task 𝑣𝑘 to the cloud 𝐷𝑚𝑖𝑛(𝑣𝑘). 

       Remove 𝑣𝑘 from B. 

   Update the task set B 

End While 

Fig. 3: Service Broker Algorithm 

3.1.3 Layer 2 of HiCloud 
Layer 2 consists of the data center, the physical hardware 

details of the data center and the internet characteristics.  

In the data center class, four data centers were modelled within 

four regions. In each data center, 100 machines were modelled. 

Each machinehasamemoryof512GB,4 processor, 1TB storage 

and 1000MB available bandwidth per machine. The data center 

architecture is x86 architecture with Linux operating system. 

The data center processor speed was modelled as 10000MIPS. 

A summary of these models is presented in Table 4.2.  

The HiCloud environment maintains an 𝑚 × 𝑛 size matrix for 

all entities that are currently active in the simulation context. 

An entry kij in the matrix represents the delay that a message 

would undergo when it is being transferred from entity i to 

entity j over the cloud network. It means that an event from 

entity i to j will only be forwarded by the service broker when 

the total simulation time reaches the 𝑡 + 𝑑 value, where 𝑡 is the 

simulation time when the message was originally sent, and 𝑑 is 

the network latency between entities 𝑖 and 𝑗.  

 

3.1.4 Layer 3 of HiCloud  
Layer 3 consists of user grouping factors in the user bases, 

request grouping factor in the data center, executable 

instruction length per request (bytes), and load balancing policy 

across VMs in a single data center.  

User grouping factors class modelled users in to groups 

according to the number of bases within a time zone and it was 

assumed that most users use the application during working 

hours for about 2 hours within 8GMT to 6GMT. One tenth of 

simultaneous online users during peak hours was online during 

off peak hours and also each user makes a new request at every 

5 minutes.  

In the request grouping factor class, the request sent to the 

cloud network is grouped in the data center as average peak 

requests. Executable instruction length per request (bytes) class 

modelled 250 bytes of instructions per request.  

The load balancing policy class modelled a task migration 

policy. The load balancer balances workload by migrating 

excess tasks from overloaded virtual machines to under loaded 

virtual machines. This load balancing algorithm was used 

purposely to reduce the makespan time and increases the 

average resource utilization ratio of tasks in the cloud 

environment as shown in Figure 3.4. The algorithm uses FCFS 

and SJF in scheduling workload to the virtual machine. If the 

utilization level of the virtual machine is more than 80% (over 

loaded virtual machine) of its initial capacity, this means it is 

overloaded, therefore excess load is taken to a virtual machine 

that its utilization is less than 25% (under loaded virtual 

machine) of its capacity, until under loaded virtual machine 

reach to threshold limit of overload virtual machine. After 

transferring tasks, the algorithm will check the load balancing 

condition and transfer the task if there is any virtual machine 

that is not satisfied with the overloading condition. The 

scheduler schedules all tasks to the virtual machine in such a 

way that cloud user can execute their task in minimum 

makespan time and average resource utilization been at 

maximum. All tasks are non-priority basis and independent, 

every task has task length 𝑇𝐿𝑖  that is expressed in million 

instructions. Every task requires 𝑝 processing speed, 𝑞 number 

of CPU, 𝑟 amount of main memory and bandwidth 𝐵 in MBPS.  

The cloud task scheduler contains information about M virtual 

machines 𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3…𝑉𝑀𝑀. The capacity of each virtual 
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machine and the capacity of all virtual machines were 

calculated using equation (3) and equation (4) 

 

 𝑐 = 𝑝 × 𝑞                                           (3)  

 

where 𝑐 denotes the capacity of each virtual machine, 𝐶 denotes 

the capacity of all virtual machines, 𝑝 denotes processing speed 

of the processor (CPU) in million instructions per second,  

𝑞 denotes the number of CPU that are busy to execute the task.  

The capacity of all virtual machine is calculated using equation 

4.  

 

𝐶 = ∑ 𝐶𝑉𝑀
𝑚
𝑗=1                                      (4)  

 

The Cloud task scheduler allocates the workload to all virtual 

machines, and each virtual machine has a queue to store the 

task. The total length of a queue in the virtual machine 

represents the load on that virtual machine. Load on a virtual 

machine at a particular time 𝑡  can be calculated as the number 

of tasks on a particular virtual machine divided by the service 

rate of the virtual machine as shown in equation 5 

 

 𝐿 = 𝑘 × 𝑙/𝑠                                       (5)  

 

where 𝐿 denotes load on the virtual machine at time t, 𝑘 denotes 

the number of task 1, 2, 3…N tasks  

𝑠 denotes service rate of the virtual machine at time t, 𝑙 denotes 

the length of tasks.  

Service rate of virtual machine 𝑠 is expressed as processing 

power 𝑝  and number of CPU 𝑞 in equation 6 

 

 𝑠 = 𝑝 × 𝑥(𝑡)                                    (6)  

 

where 𝑥 =1,2,3…….. 𝑞.  

The Total load at all virtual machine can be calculated using 

equation 7  

 

𝑄 = ∑ 𝐿𝑗
𝑛
𝑗=1                                      (7)  

where 𝑄 denotes total tasks at all virtual machines, 𝐿 denotes 

load on the virtual machine at time t  

If the workload is less than the data center capacity then the 

load balancer balances the load over all the virtual machines. If 

any virtual machine is over loaded, the load balancer transfers 

the task of the overloaded virtual machine to the under loaded 

virtual machine so that all the tasks can be executed in 

minimum time. Therefore, the task transfer time is calculated 

using equation 8 Task transfer time (t) is 

 

 𝑡 = 𝑙/𝐵                                                    (8)  

 

where 𝑡 denotes the task transfer time, 𝑙 denotes the length of 

the task, 𝐵 denotes the bandwidth  

The execution time of task 𝑇𝑖 on virtual machine 𝑉𝑀𝑗 can be 

calculated using equation 9 

 

 𝐸 = ∑ 𝑒𝑖𝑗
𝑛
𝑖,𝑗 × 𝑙

𝑝 × 𝑞⁄                              (9)  

 

where E denotes the execution time of tasks 𝑡𝑖 on virtual 

machine 𝑣𝑚𝑗, 𝑒𝑖𝑗 denotes the execution time of task 𝑖 on 

resource 𝑗, 𝑙 denotes the length of the task, 𝑝 denotes the 

processing speed of the processor (CPU) in million instructions 

per second, 𝑞 denotes number of CPU that are busy to execute 

the tasks.  

The response time of task is calculated using equation 10 

 

 𝑅 = 𝑎 + 𝐸                                              (10)  

 

where 𝑅 denotes the response time, also 𝑎 denotes the arrival 

time of task 𝑡𝑖, and 𝐸 denotes the execution time of tasks 𝑡𝑖on 

virtual machine 𝑣𝑚𝑗.  

The makespan time of tasks can be calculated using equation 

11 

 

 𝑀 = ∑ 𝐸𝑗 + 𝑡𝑛
𝑗=1                                     (11)  

 

where 𝑀 denotes the makespan time, 𝑡 denotes the task transfer 

time, 𝐸𝑗  denotes the execution time of tasks.  

The average resource utilization ratio of resources can be 

calculated using equation 12 and equation 13. The limits of the 

average resource utilization ratio are from 0 to 1, maximum 

value for ARUR is 1(resource utilization is 100%) and the 

worst value is 0 (resource is in ideal condition). 

 

 𝑈 = (𝑚
𝑀⁄ )                                             (12)  

 

Given that 𝑚 = ∑
𝑓𝑗

𝑑
⁄𝑛

𝑗=1                         (13)  

 

where 𝑈 denotes the average resource utilization ratio, 𝑚 

denotes mean time, 𝑀 denotes makespan time, 𝑓 denotes the 

time taken by resource 𝑣𝑚𝑗 to finish all the jobs, 𝑑 denotes the 

number of resources.  

The throughput value is also calculated using equation 14 

 

 𝑃 = ∑ 𝐽𝑖
𝑖
0                                      (14)  

 

where  𝑃 denotes the throughput value, 𝐽 denotes the job. The 

load balancing algorithm also calculates the task migration time 

and then adds it to the makespan time of the particular virtual 

machine that is executing the task. After submitting the entire 

task, the makespan time is now calculated.  
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Notation  of symbols 

UVM[]= under loaded virtual machine array,  

BVM[] = balanced virtual machine array,  

OVM[] = overloaded virtual machine array,  

UM = under loaded machine,  

OM = overloaded machine.  

Cloudlet Scheduling Operation  

1. Get N number of task, and Sort it in decreasing order.  

2. Get M number of the virtual machine, and Sort it in decreasing order of processing speed.  

3. For ∀ 𝑇𝑖  𝜖 0 𝑡𝑜 𝑁 − 1 and virtual machine 𝑅𝑗 ∈ 0 𝑡𝑜 𝑀 − 1.  

4. Begin to assign task in a First come first serve order.  

End VM for loop, End task for loop  

Load Balancing on Virtual Machine  

5. Begin the for loop i=0 to VmSize-1 and cloudlet loop k=0 to CloudletSize-1  

6. Get the load L and capacity of all virtual machine using the equations.  

7. If (𝐿 > 𝐶), load balancing on virtual machine cannot be possible, then use elasticity, otherwise start to check each VM.  

8. Get the number of under loaded VM, balanced VM and overloaded VM. 

 // UM, OM are variable UM=𝐶𝑉𝑀 ∗ . 25,  OM=𝐶𝑉𝑀 ∗ . 8,  

9. Get the VM to transfer the task on to,  

Sort UM in increasing order and OM in decreasing order   

The operation of transferring task   

10 While OM!=∅ && UM!=∅,   

Begin For loop for OM  

If OM & UM exist, then transfer the tasks from OM to UM  

𝑇𝑖→ 𝑉𝑀𝑗 | Until load at 𝑉𝑀𝑗 ≤ 𝑂𝑀|| 𝑉𝑀𝑗 ≥ 𝑈𝑀  

Also, calculate the transfer time of task (𝑇𝐿𝑖 / bandwidth).  

11. Check the status of each VM, If there is any virtual machine that is still in overloaded condition, then repeat load balancing 

operation. 

Fig. 4: Virtual Machine Load Balancing Algorithm 

Figure 5 shows the class diagram of entities in HiCloud and their relationship 
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4. SYSTEM IMPLEMENTATION, 

 RESULTS AND EVALUATION  

4.1 System Implementation  
The proposed system HiCloud was implemented using 

CloudSim toolkit 3.0 version which is written in java language. 

The software specification includes CloudSim toolkit 3.0 

version, Java programming language, JCreator IDE. The 

hardware specification is Intel(R) core i3, CPU M370 @ 

2.40GHz processor, 6GB RAM, 64-bit system, 500GB Hard 

disk and Windows 7 ultimate edition.  

4.2 Simulation of the System  
The simulation was carried out with different input values to 

show the efficiency of the system developed as shown in Fig. 

6. A total of 4 userbase modelled a group of users in four 

geographical regions. Group of users were contained within a 

time zone and assumed that most users used the application 

during working hours for about 2 hours within the 8GMT to 

6GMT. Assuming that one-tenth of simultaneous online users 

during the peak hours was online during the off-peak hours and 

each user made a new request every 5 response time, makespan 

time and utilization ratio after each simulation period. minutes 

when online. This implies that a total of 24 request/2hr was 

made and the data size of each request is 100byte/request. The 

hardware components of HiCloud were modelled into ‘main 

configuration’, ‘data center 

configuration’ and ‘advanced’ as shown in Fig. 6, 7 and 8. 

The metrics and parameters of hardware specification used in 

modelling cloud network in HiCloud simulator are shown in 

Table 1. The value for each component according to their 

configuration in Table 1 was inputted and simulated to generate 

the execution time, response time, makespan time and 

utilization ratio after each simulation period. 
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- loadBalancer: VmLoadBalancer 

+ body(): void 

- handleReuest(cl: InternetCloudlet): 

void 

- handleResponse(cl: 

<Abstract> 

vmLoadBalancer 

- vmAllocations: Map 

+ getNextAvailableVm(): 

int 

RoundRobin 

VmLoadBalance

r 

Throttled 

VmLoadBalancer 

Cloudsim <Singleton> 

- internetCharacteristics 

- latencyMatrix: double[][] 

- bwMatrix: double[][] 

- entityLocations: Map 

- allEntities: List 

- trafficLevels: Map 

- serviceLatencies: Map 

+ getPingDelay(src:String, dest String): double 

+ getDataTransferDelay(src, dest): double 

+ getTotalDelay(src: String, dest: String): 

double 

+ getProimityList(region: int): List 

+ UpdateServiceLatency(dc: String, t: double):      

void 

Internet 

serviceBrokers: Map 

body(): void 

processEvent(e: Sim_event): void 

 

<Interface> 

CloudAppServiceBroke

r 

getDestination(inquirer. 

GeoLocatable): String 

Cloudsim.Cloudlet 

InternetCloudlet 

appId: int 

originator.Geolocatable 

requestCount int 

UserBase 

Region: int 

peakHrs: double[] 

peakAvgUsers: int 

offPeakAvgUsers: int 

instLenPerReq: int 

reqDataSize: long 

userGroupingFactor: int 

app: Application 

responseHandler: 

ResponseHandler 

body(): void 

 

Cloudsim.CloudSim 
Response 
Handler 

Body(): void 

Closest Data 
Center 
ServiceBroker 

BestResponse 

TimeServiceBroker 

Optimize 

Execution 

Time 

ServiceBroker 
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Fig. 6: Graphical User Interface of HiCloud 

 
Fig. 7: Graphical User Interface of HiCloud 
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Fig. 8: Graphical User Interface of HiCloud 

 

Table 1 Parameters and values used in HiCloud 

Parameter Value 

Size of VM  1000MB 

VM Memory 1024MB 

VM Bandwidth 1000MB 

DC – Architecture x86 

DC – OS Linux 

DC- VMM Xen 

DC–No of Machines 100 

DC- Memory/ Machine 512GB 

DC- Storage/ Machine 1TB 

DC- Available Bandwidth/ Machine  1000MB 

DC- No of Processors/ Machine 4 

DC – Processor Speed 10000MIPS 

DC – VM Policy Time Shared 

User Grouping Factor 1000 

Request Grouping Factor 100 

No of instruction per request 250 

No of Userbase 4 
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4.2 Experiment Result  
In the experiment 1, ten scenarios were examined. In scenario 

one 10 virtual machines were used, in the scenario two 20 

virtual machines were used, up till scenario 10 were 100 virtual 

machines were used. In experiment 1 an application was 

accessed by ten thousand (10,000) users with a different 

number of virtual machines ranging from 10, 20, …100; across 

4 data centers with closest data center service broker and 

throttling load balancer. The performance of the data centers 

revealed that at 10VMs the response time was 100.31ms, at 

20VMs the response time reduced to 95.60ms and when the 

VM got increased to 50VMs the response time of the cloud 

network became 83.67ms. Also at100VMs the response time 

got reduced to 60.95ms as shown in Table 2. The performance 

of experiment 1 shows a reduction in response time when the 

number of virtual machines are increased. This implies that for 

better performance the number of VMs per data center should 

be much to fasten the response time of the network.   

 

Table 2 Experiment 1 Result using closest datacenter and throttling load balancer 

Scenario  No of Users No of VM/4 data center with 

closest data center and throttling 

Average response time 

(milliseconds) 

Average execution time (milliseconds) 

1 10,000 10 100.31 39.7 

2 10,000 20 95.60 31.58 

3 10,000 30 91.57 30.47 

4 10,000 40 87.25 29.75 

5 10,000 50 83.67 28.46 

6 10,000 60 80.59 27.30 

7 10,000 70 76.33 26.47 

8 10,000 80 72.55 25.89 

9 10,000 90 70.11 24.62 

10 10,000 100 60.95 23.74 

 

In experiment 2 an application was accessed by ten thousand 

(10,000) users with a different number of VMs ranging from 

10, 20,…100; across 4 data centers with optimize execution 

time service broker and throttling load balancer. The 

performance of the data centers shows that at 10VMs the 

response time was 59.68ms, at 20VMs the response time 

dropped to 56.37ms and when the VM got increased to 50VMs 

the response time of the cloud network became  

45.50ms. Also at100VMs the response time was 29.90ms as 

 

 shown in Table 3. The performance of experiment 2 shows a 

reduction in response time compared to experiment 1, this was 

due to allocating tasks to the data center with minimum 

execution time. This means that for better performance 

optimize execution time service broker should be employed in 

a cloud network. Hence the use of optimizing execution time 

as service broker policy in the proposed system will speed up 

the response time of the cloud network.  

 

 

 

 

 

 

 

 

 

No of data center 4 

Established number of virtual machines 50 

ServiceBroker Optimize execution 

time 

Vmloadbalancer Task Migration 
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Table 3 Experiment 2 Result using optimize execution time service broker and throttling load balancer 

Scenario No of 

users 

No of VM/4 data center with 

optimized execution time and 

throttling 

Average response time 

(milliseconds) 

Average execution time 

(milliseconds) 

1 10,000 10 59.68 31.69 

2 10,000 20 56.37 30.76 

3 10,000 30 52.99 29.40 

4 10,000 40 48.89 27.90 

5 10,000 50 45.50 25.90 

6 10,000 60 41.36 23.76 

7 10,000 70 38.96 21.60 

8 10,000 80 37.50 19.59 

9 10,000 90 32.68 18.40 

10 10,000 100 29.90 17.20 

 

In experiment 3 an application was accessed by ten thousand 

(10,000) users with a different number of virtual machines 

ranging from 10, 20, …100; across 4 data centers with optimize 

execution time service broker and task migration load balancer. 

The performance of the data centers shows that at 10VMs the 

response time was 32.79ms, at 20VMs the response time 

dropped to 31.58ms and when increased to 50VMs the response 

time of the cloud network became 28.46ms. Also at100VMs 

the response time was 23.74ms as shown in Table 4. The 

performance of experiment 3 shows a  

 

 

high reduction in response time compared to experiment 1 and 

2, this was due to allocating tasks to the data center with 

minimum execution time and dynamically migrates load from 

overloaded virtual machines to the under loaded virtual 

machines for faster processing. This means that; for better 

performance optimize execution time service broker and task 

migration load balancer should be used in a cloud network. 

Hence the use of optimizing execution time as service broker 

policy and task migration load balancer in the proposed system 

will speed up the response time.  

 

Table 4. Experiment 3 Result using optimize execution time service broker and task migration load balancer 

Scenario No of 

users 

No of VM/4 data 

center with 

optimized execution 

time and task 

migration 

(milliseconds) 

Average 

response time 

(milliseconds) 

Average 

execution time 

(milliseconds) 

Average 

makespan time 

(milliseconds) 

Average 

utilization 

ratio 

(percentage) 

1 10,000 10 32.79 18.65 1.80 0.95 

2 10,000 20 31.58 17.22 2.73 0.90 

3 10,000 30 30.47 16.78 3.62 0.80 

4 10,000 40 29.75 15.36 4.55 0.70 

5 10,000 50 28.46 14.84 5.45 0.60 

6 10,000 60 27.30 13.93 6.37 0.50 

7 10,000 70 26.47 12.82 7.31 0.40 
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8 10,000 80 25.89 11.25 8.28 0.30 

9 10,000 90 24.62 10.93 9.21 0.20 

10 10,000 100 23.74 9.95 10.14 0.10 

 

4.3 Comparison of Experiment 1, 2 and 3 In 

comparing the three experiments; with 10VMs and 10,000 

users as shown in Table 5, the response time of the cloud 

network in experiment 1 reduces from 100.31 milliseconds to 

59.68 milliseconds in experiment 2 and the execution time also 

reduces from 39.7 milliseconds to 31.69 milliseconds in 

experiment 2 due to the use of optimized execution time service 

broker policy. The better performance is now compared to the 

result of experiment 3. The response time of experiment 2 

which was 59.68 milliseconds reduced to 32.79 milliseconds in 

experiment 3 and the execution time also reduces from 31.69 

milliseconds to 18.65 milliseconds as a result of deploying the 

task migration load balancer policy. Hence the big distance 

between the curves in Fig. 9 and Fig.  

 

 

 

10. When 50VMs and 10,000 users were experimented, the 

response time reduces from 83.67 milliseconds in experiment 

1 to 45.50 milliseconds in experiment 2 and reduces to 28.46 

milliseconds in experiment 3. The huge difference in the 

execution time of experiment 3 shows the efficiency of the task 

migration load balancer compared to experiment 1 and 2 when 

50VMs were deployed. The performance of the cloud network 

with 90VMs in experiment 2 is what is being recorded when 

10Vms were deployed in experiment 3. This is due to the use 

of optimizing execution time service broker and task migration 

load balancer. This means that the use of a larger number of 

VMs is of no importance once an optimize execution time 

service broker and task migration load balancer is deployed in 

the cloud network.  

Table 5. Comparison of Experiments 1, 2 and 3 with 10,000 Users and 4 Data Centers 

  Experiment 1 Experiment 2 Experiment 3 

  Closest Data Center and 

Throttling 

Optimize execution time 

and Throttling 

Optimize execution time and Task Migration 

No 

of 

VM  

No of 

Users 

Avg. Resp. 

Time(ms) 

Avg.  

Exe. 

Time(ms) 

Avg. Resp. 

Time(ms) 

Avg.  

Exe.  

Time(ms) 

Avg.  

Resp.  

Time(ms) 

Avg.  

Exe.  

Time(ms) 

Avg.  

Mksp.  

Time(ms) 

Util. 

Ratio 

10 10,000 100.31 39.7 59.68 31.69 32.79 18.65 1.80 0.95 

20 10,000 95.60 31.58 56.37 30.76 31.58 17.22 2.73 0.90 

30 10,000 91.57 30.47 52.99 29.40 30.47 16.78 3.62 0.80 

40 10,000 87.25 29.75 48.89 27.90 29.75 15.36 4.55 0.70 

50 10,000 83.67 28.46 45.50 25.90 28.46 14.84 5.45 0.60 

60 10,000 80.59 27.30 41.36 23.76 27.30 13.93 6.37 0.50 

70 10,000 76.33 26.47 38.96 21.60 26.47 12.82 7.31 0.40 

80 10,000 72.55 25.89 37.50 19.59 25.89 11.25 8.28 0.30 

90 10,000 70.11 24.62 32.68 18.40 24.62 10.93 9.21 0.20 

100 10,000 60.95 23.74 29.90 17.20 23.74 9.95 10.14 0.10 
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Fig. 9: Analyzing response time of experiment 1, experiment 2 and experiment 3 

Fig. 10: Analyzing the execution time of experiment 1, experiment 2 and experiment 3 

4.4 Critical Evaluation of Results  

The result of experiment 1 shows that when 10,000 users use 

the cloud network with 10VMs using closest data center and 

throttling. The execution time was 39.7 milliseconds and the 

response time was 100.31 milliseconds, which is high 

compared to 31.69 milliseconds and 59.68 milliseconds when 

optimizing execution time and throttling was used in 

experiment 2. The result of optimizing execution time and task 

migration is the best as shown in experiment 3, with an 

execution time of 18.65 milliseconds and response time of 

32.79 milliseconds. This result got better when the number of 

VMs got increased to 50VMs. The execution time dropped to 

14.84ms and the response time reduces to 28.46 milliseconds. 

Both execution and response time of the proposed system 

decreases as several virtual machine increases to 100VMs but 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 
Foundation of Computer Science FCS, New York, USA 
Volume 7 – No. 39, August 2023 – www.caeaccess.org 

 

14 

the makespan time increases because of the time taken to 

balance the load over virtual machines. Therefore to have an 

effective network a Cloud network of 50VMs with optimize 

execution time and task migration policy is established since at 

this point execution time, response time and the makespan time 

is minimized and also resource utilization ratio is optimized.  

4.5 Comparative Analysis with Other Works  

The metrics used in the existing systems were used in the 

developed system. With 10,000 users, optimize execution time 

service broker and task migration load balancer; the 

comparison generated is shown in Table 4.7. When the 

established configuration of [9] was inputted into the developed 

system the response time was 78.27 milliseconds instead of 

125.07 milliseconds derived in CloudAnlyst. Also, when the 

established configuration of [10] was inputted into the 

developed system the response time was 31.14 milliseconds 

instead of 60.73 milliseconds for the iCanCloud. When the 

established configuration of [16] was inputted into the 

developed system the response time was 23.84 milliseconds 

instead of 45.6 milliseconds gotten in CloudSim. These results 

shows that iCloud has better performance value compared to 

existing systems.  

5. CONCLUSION AND 

RECOMMENDATION  
Cloud computing and its characteristics have been discussed in 

this thesis. This research work present HiCloud: a new 

simulation tool that allows seamless modelling, simulation, and 

experimenting with emerging cloud computing infrastructures 

and application services. The developed system allocates tasks 

to the data center with minimum execution time and schedules 

tasks to virtual machines using the task migration approach that 

dynamically balance the load. Experimental results revealed 

that the developed system has a better quality of system load 

balancing and the utilization of system resources. Researchers 

and industry-based developers can use HiCloud to test the 

performance of a newly developed application service in a 

controlled and easy to set-up environment. The performance 

testing of HiCloud simulator is time effective. Developers can 

easily model and test the performance of their application 

services in Cloud environments with minimum performance 

time and utilization ratio maximized. Security models can be 

introduced to the toolkit to strengthen the cloud computing 

paradigm.  
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