

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

1

Development of a High Performance Toolkit for Modelling

and Simulating Cloud Computing Environment and

Application

Mary T. Kinga
Computer Science Department,

Federal University of Technology

Sunday O. Adewale
Computer Science Department,

Federal University of Technology

Folasade M. Dahunsi
Computer Engineering Department,
Federal University of Technology,

Akure, Nigeria

ABSTRACT

Presently, none of the current distributed (including grid and

network) system simulators can offer the environment that can

be directly used for modelling cloud computing environments

and applications with high-performance rate, and maximum

resource utilization. To overcome this challenge this research

presents HiCloud: a new simulation framework that allows

seamless modelling, simulation, and experimentation of

emerging cloud computing infrastructures and application

services. The developed system is a Cloudsim-based simulator

that models cloud networks with minimum processing time and

maximum resource utilization ratio. This research focuses on

the resource utilization by using optimize execution time

algorithm for service broker policy. It also takes into

consideration the task migration approach for the load

balancing algorithm that is used in the execution of tasks. The

system was able to model cloud networks and application with

high-performance metrics. The experimental results showed

that the developed system has a better performance in terms of

response time, execution time, makespan time and resource

utilization ratio compared to existing systems.

Keywords
Simulation, Cloud Computing, Modeling, High Performance,

Toolkit.

1. INTRODUCTION
The world is connected and more than two billion people

connect to the Internet, the community of information

technology has come up with a new service delivery

mechanism called "Cloud Computing". Cloud computing is a

new model that provides ubiquitous, convenient and on-

demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage,

applications, and services) which can be rapidly provisioned

and re-leased with little management effort or little service

provider interaction [1]. The features of Cloud Computing

include self-demand, comprehensive network access, resource

pooling and scalability of resources. Cloud Computing

provides services such as Software as a Service (SaaS),

Platform as Service (PaaS) and Infrastructure as a Service

(IaaS) and there are four types of Cloud models; Public Cloud,

Private Cloud, Community Cloud and Hybrid Cloud [2][21].

Cloud infrastructure includes data centers that host servers and

uses different levels of virtualisation techniques to offer cloud

services [3][22].

The design of a Data Center of the next generation is important

because clouds aim to power the next-generation data centers

as an enabling platform for dynamic and flexible application

provisioning. This is done by exposing the data center’s

capabilities as a network of virtual services (e.g. hardware,

database, user-interface, and application logic) so that users can

access and deploy applications from anywhere on the Internet-

driven by the demand and Quality of Service (QoS)

requirements [4][5]. By using the clouds platform which holds

application, IT companies are freed from the common task of

setting up hardware and software infrastructures. Therefore,

they can focus more on innovation and the creation of business

values for their application services [5][23]. The Cloud

Network design is carried out to evaluate and know the

requirement of the cloud network to be implemented [24][25].

This design is represented as a network diagram to be

implemented physically. A well-designed network minimises

cost and optimises network bandwidth [6][7]. It is not possible

to carryout benchmarking experiments in repeatable, reliable,

and scalable environments using real-world Cloud

environments. A better alternative is the use of simulation tools.

These tools give room for the possibility of evaluating the

hypothesis (application benchmarking study) in a well-

controlled environment whereby one can easily regenerate

results. To evaluate the performance of Cloud provisioning

policies, the software workload models and the resources

performance models; in a repeatable manner under different

system and user configurations and requirements is very

difficult to obtain [26].

To overcome this challenge, this research work presents

HiCloud: A Cloudsim-based toolkit that enables modelling and

simulation of the cloud computing system and behavioural

modelling of Cloud components like data centers, virtual

machines (VMs) and resource provisioning policies. The

usefulness of HiCloud simulator is shown in a scenario

involving the dynamic scheduling of tasks in the cloud

environment. The result shows that the Cloud computing model

reasonably improves the application QoS requirements under

fluctuating resource and service demand patterns with

minimum makespan time and maximum resource utilization.

This paper is structured in the following order: In section 2, the

previous works that are related to the proposed work are

discussed. In section 3, HiCloud architecture is discussed. The

proposed cloud system implementation and the result are

analysed in section 4. Section 5 concludes the aim of the

proposed work and its future work.

2. RELATED WORKS
There is a need for the development of a cloud computing

simulator to model cloud environments and application testing

with better performance features. [8] presented CloudSim: a

toolkit that models and simulates cloud computing

environments and evaluates resource provisioning algorithms.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

2

The study was based on the need for tools to test the newly

developed methods, policies and mechanisms to efficiently

manage cloud infrastructures, and the need to evaluate the

hypothesis before a real deployment in an environment, where

one can reproduce tests. [9] presented CloudAnalyst: A

cloudsim-based visual modeller that analyzes cloud computing

environments and their applications. The study was carried out

due to the lack of tools that enable developers to evaluate the

requirements of large-scale cloud applications in terms of the

geographic distribution of both computing servers and user

tasks. [10] presented iCanCloud: A flexible and scalable cloud

infrastructure simulator. The study was premised on the need

for the tool to decide the best starting conditions on pay-as-you-

go scenarios. Based on this need iCanCloud was developed, a

new simulator of cloud infrastructures with remarkable features

such as flexibility, scalability, performance and usability.

[11] presented a design of the network infrastructure of a cloud

data center for use in the health sector of Arequipa city. The

study was based on the need for a powerful and hardy data

center to facilitate the provision of healthcare products and

services to patients in remote areas and patients who have

limited access to quality medical services. [12] presented

designing and building a data center network: an alternative

approach with OpenFlow. The research was based on the need

for a new approach in which the network can be treated more

dynamically, where VMs and other resources can be quickly

and flexibly introduced, moved, or modified as needs change,

without the need for manual intervention to reconfigure the

network. [13] presented building a private HPC cloud for

computing and data-intensive applications. They aimed at

amplifying the improved resource utilization of cloud

computing for HPC applications due to their insatiable resource

needs. Cluster virtualization was used to achieve optimal

compute and data-intensive applications in private HPC cloud

developed.

[14] presented the design and implementation of a peer-to-peer

cloud system. The research is premised on maintaining a

consistent structure over a set of unsecured computing

resources. [6] presented dimensioning resilient optical grid /

cloud networks.

[3] worked on cloud computing workload and capacity

management using domain-specific modelling. Domain-

specific modelling, model transformation, and time series

analysis techniques with estimation algorithms were used to

manage cloud computing workload and capacity. [7] presented

the design of a government cloud network: case study Ondo

state. A mathematical model was used to design the network,

and specification from cloud management software was used to

deploy AMD-Virtualised server. An established simulator

(CloudSim and CloudAnalyst) was used to simulate the

proposed G-Cloud that was designed.

[15] presented an enhanced deadline constraints based tasks

scheduling mechanism for the cloud environment. A

scheduling system for deadline sensitive workload or lease was

developed. [16] presented an extended intelligent water drop

algorithm for workflow scheduling in the cloud computing

environment. The new algorithm extends the natural-based

Intelligent Water Drops (IWD) algorithm to optimize the

scheduling of workflows over the cloud. [17] presented a new

cost-efficient approach for deadline-constrained workflow

scheduling by dynamic provisioning of resources. In this work

a new approach for dynamic provisioning of resources and a

workflow scheduling algorithm that is cost-efficient and

deadline-constrained was invented. [18] presented genetic-

based algorithms applied to a workflow scheduling algorithm

with security and deadline constraints in clouds.

[19] presented simulation modelling of cloud computing for the

smart grid using cloudsim. A smart grid cloud was simulated

using CloudSim. [20] worked on efficient task scheduling for

a-budget constraint parallel applications on heterogeneous

cloud computing systems. The research work shows that the

preassignment of tasks with the minimum cost does not

necessarily lead to the minimization of the schedule length. We

have proposed the development of HiCloud, a high-

performance toolkit for modelling and simulating cloud

computing environment and applications.

3. METHODOLOGY

3.1 System Architecture
HiCloud is a CloudSim-based simulator that models and

simulates cloud environments and application. It has a

graphical user interface with some extensions of models for

better performance. It was developed in java programming

language and run through JCreator IDE. HiCloud can define

simulation with a high degree of configuration and it is very

flexible. The architecture of HiCloud simulator is shown in Fig.

1.

Fig 1: HiCloud Architecture

3.1.1 CloudSim Toolkit
CloudSim toolkit supports both system modelling and

behaviour modelling of cloud infrastructures such as data

centers, virtual machines and as well as resource provisioning

policies. The data center entity controls several host entities.

The host is a CloudSim component that represents a physical

computing server in a cloud network. CloudSim supports

simulation scenarios that assign specific CPU cores to specific

VMs (a space-shared policy), dynamically distribute the

capacity of a core among VMs (time-shared policy), or assigns

cores to VMs on demand. HiCloud components are modelled

into three main layers in the input phase. Layer 1 is the main

configuration layer, layer 2 is the data center configuration

 GUI CloudSim Extension

CloudSim Toolkit

HiCloud

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

3

layer and layer 3 is the advance layer. Values inputted in

models in these three layers were simulated and then generated

metrics such as average execution time, average response time,

average makespan time and average utilization ratio. The

overview of HiCloud layered architecture is shown in Fig. 2.

3.1.2 Layer 1 of HiCloud
Layer 1 is the main configuration class. This class contains the

simulation duration class, user bases class, service broker

policy class and the application deployment configuration

class. In the simulation class, the simulation time was modelled

as 60 seconds. The user bases class modelled a group of users

as an entity UB1, UB2, UB3 and UB4. Regions of different

user bases were modelled as region 0, region 1, region 2 and

region 3. The request of users per hour was modelled as 60

requests per user base, data size per request was modelled as

100, the peak hour start time was modelled as 8am, and the

peak hour end was modelled as 6pm as shown in Figure 6.

Fig 2: HiCloud Layer Architecture

The service broker policy class modelled an optimize execution

time algorithm where tasks are allocated to the data center that

has minimum execution time for fast response time. This

execution time is calculated ahead. Fig. 4 shows the optimize

execution time algorithm.

The application deployment configuration class modelled the

parameters of virtual machines for executing task or services

requested by users.

The service broker algorithm in Fig. 3 shows the detailed steps

needed to perform optimize execution time algorithm. Finish

time cannot be calculated before the task is executed so the

expected finish time is calculated depending on the executable

length (million instructions) and the server processor speed.

The value gotten is used to calculate the expected finish time

as follows:

1. The task arrives in the form of an Internet cloudlet and the

size of the task is defined by its Executable instruction length

(MI) and size (MB).

2. The resources (DCs) are defined by their processing speed

(MIPS) and bandwidth (Mbps).

3. To schedule n tasks (T1, T2, T3…. Tn) onto m available

resources (R1, R2, R3…. Rm), the expected time to process

tasks on each of the resources is calculated using Equation 1.

 𝑇𝑖𝑗 = 𝑒𝑖𝑗 + 𝑟𝑗 (1)

where 𝑇𝑖𝑗 denotes the expected running time of task i on

resource j, 𝑒𝑖𝑗 denotes the execution time of the task 𝑖 on

resource 𝑗, 𝑟𝑗 denotes the ready time of the resource 𝑗.

4. So each entity of the ETM matrix is computed as that

equation then the algorithm chooses the entity with the min

value, and according to that value assigns tasks to the right data

center.

Response time is the processing time plus the cost of the request

or the task transmission time, queued through the network

nodes.

Given that the expected response time,

 𝑡𝑖𝑚𝑒 = 𝐹 − 𝐴 + 𝑇𝑑𝑒𝑙𝑎𝑦 (2)

where 𝐹 denotes the time to complete the task, 𝐴 denotes the

arrival time of the task. The algorithm only affects the

processing time in a local environment of the data center.

Therefore, the communication delay parameter can be omitted,

hence 𝑇𝑑𝑒𝑙𝑎𝑦= 0.

Layer 3

Layer 2

Layer 1

 User

Grouping

Factors in

User Bases

Simulation

Duration and

User Bases

Service

Broker Policy
Application

Deployment

Data Centers

Internet

Characteristics

Request

Grouping

Factor in

Data Centers

Executable

Instruction

Length Per

Request

Load

Balancing

Policy Across

VMs

Physical

Hardware

Details of

Data Centers

Average Execution Time

Average Response Time

Average Makespan Time

Average Utilization Ratio

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

4

Input: a set of tasks, m data centers, ETM matrix.

Output: the schedule plan

Initiate the task set B.

While there are tasks not assigned do

 Update task set B.

 For i:task 𝑣𝑖 do

 Pull all Data centers status.

 Get the earliest resource available time.

 Find the Datacenter 𝐷𝑚𝑖𝑛(𝑣𝑖) giving the earliest finish time of 𝑣𝑖.

 End For

 Find the task-Data center pair (𝑣𝑘 , 𝐷𝑚𝑖𝑛(𝑣𝑘)) with the earliest finish time.

 Assign the task 𝑣𝑘 to the cloud 𝐷𝑚𝑖𝑛(𝑣𝑘).

 Remove 𝑣𝑘 from B.

 Update the task set B

End While

Fig. 3: Service Broker Algorithm

3.1.3 Layer 2 of HiCloud
Layer 2 consists of the data center, the physical hardware

details of the data center and the internet characteristics.

In the data center class, four data centers were modelled within

four regions. In each data center, 100 machines were modelled.

Each machinehasamemoryof512GB,4 processor, 1TB storage

and 1000MB available bandwidth per machine. The data center

architecture is x86 architecture with Linux operating system.

The data center processor speed was modelled as 10000MIPS.

A summary of these models is presented in Table 4.2.

The HiCloud environment maintains an 𝑚 × 𝑛 size matrix for

all entities that are currently active in the simulation context.

An entry kij in the matrix represents the delay that a message

would undergo when it is being transferred from entity i to

entity j over the cloud network. It means that an event from

entity i to j will only be forwarded by the service broker when

the total simulation time reaches the 𝑡 + 𝑑 value, where 𝑡 is the

simulation time when the message was originally sent, and 𝑑 is

the network latency between entities 𝑖 and 𝑗.

3.1.4 Layer 3 of HiCloud
Layer 3 consists of user grouping factors in the user bases,

request grouping factor in the data center, executable

instruction length per request (bytes), and load balancing policy

across VMs in a single data center.

User grouping factors class modelled users in to groups

according to the number of bases within a time zone and it was

assumed that most users use the application during working

hours for about 2 hours within 8GMT to 6GMT. One tenth of

simultaneous online users during peak hours was online during

off peak hours and also each user makes a new request at every

5 minutes.

In the request grouping factor class, the request sent to the

cloud network is grouped in the data center as average peak

requests. Executable instruction length per request (bytes) class

modelled 250 bytes of instructions per request.

The load balancing policy class modelled a task migration

policy. The load balancer balances workload by migrating

excess tasks from overloaded virtual machines to under loaded

virtual machines. This load balancing algorithm was used

purposely to reduce the makespan time and increases the

average resource utilization ratio of tasks in the cloud

environment as shown in Figure 3.4. The algorithm uses FCFS

and SJF in scheduling workload to the virtual machine. If the

utilization level of the virtual machine is more than 80% (over

loaded virtual machine) of its initial capacity, this means it is

overloaded, therefore excess load is taken to a virtual machine

that its utilization is less than 25% (under loaded virtual

machine) of its capacity, until under loaded virtual machine

reach to threshold limit of overload virtual machine. After

transferring tasks, the algorithm will check the load balancing

condition and transfer the task if there is any virtual machine

that is not satisfied with the overloading condition. The

scheduler schedules all tasks to the virtual machine in such a

way that cloud user can execute their task in minimum

makespan time and average resource utilization been at

maximum. All tasks are non-priority basis and independent,

every task has task length 𝑇𝐿𝑖 that is expressed in million

instructions. Every task requires 𝑝 processing speed, 𝑞 number

of CPU, 𝑟 amount of main memory and bandwidth 𝐵 in MBPS.

The cloud task scheduler contains information about M virtual

machines 𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3…𝑉𝑀𝑀. The capacity of each virtual

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

5

machine and the capacity of all virtual machines were

calculated using equation (3) and equation (4)

 𝑐 = 𝑝 × 𝑞 (3)

where 𝑐 denotes the capacity of each virtual machine, 𝐶 denotes

the capacity of all virtual machines, 𝑝 denotes processing speed

of the processor (CPU) in million instructions per second,

𝑞 denotes the number of CPU that are busy to execute the task.

The capacity of all virtual machine is calculated using equation

4.

𝐶 = ∑ 𝐶𝑉𝑀
𝑚
𝑗=1 (4)

The Cloud task scheduler allocates the workload to all virtual

machines, and each virtual machine has a queue to store the

task. The total length of a queue in the virtual machine

represents the load on that virtual machine. Load on a virtual

machine at a particular time 𝑡 can be calculated as the number

of tasks on a particular virtual machine divided by the service

rate of the virtual machine as shown in equation 5

 𝐿 = 𝑘 × 𝑙/𝑠 (5)

where 𝐿 denotes load on the virtual machine at time t, 𝑘 denotes

the number of task 1, 2, 3…N tasks

𝑠 denotes service rate of the virtual machine at time t, 𝑙 denotes

the length of tasks.

Service rate of virtual machine 𝑠 is expressed as processing

power 𝑝 and number of CPU 𝑞 in equation 6

 𝑠 = 𝑝 × 𝑥(𝑡) (6)

where 𝑥 =1,2,3…….. 𝑞.

The Total load at all virtual machine can be calculated using

equation 7

𝑄 = ∑ 𝐿𝑗
𝑛
𝑗=1 (7)

where 𝑄 denotes total tasks at all virtual machines, 𝐿 denotes

load on the virtual machine at time t

If the workload is less than the data center capacity then the

load balancer balances the load over all the virtual machines. If

any virtual machine is over loaded, the load balancer transfers

the task of the overloaded virtual machine to the under loaded

virtual machine so that all the tasks can be executed in

minimum time. Therefore, the task transfer time is calculated

using equation 8 Task transfer time (t) is

 𝑡 = 𝑙/𝐵 (8)

where 𝑡 denotes the task transfer time, 𝑙 denotes the length of

the task, 𝐵 denotes the bandwidth

The execution time of task 𝑇𝑖 on virtual machine 𝑉𝑀𝑗 can be

calculated using equation 9

 𝐸 = ∑ 𝑒𝑖𝑗
𝑛
𝑖,𝑗 × 𝑙

𝑝 × 𝑞⁄ (9)

where E denotes the execution time of tasks 𝑡𝑖 on virtual

machine 𝑣𝑚𝑗, 𝑒𝑖𝑗 denotes the execution time of task 𝑖 on

resource 𝑗, 𝑙 denotes the length of the task, 𝑝 denotes the

processing speed of the processor (CPU) in million instructions

per second, 𝑞 denotes number of CPU that are busy to execute

the tasks.

The response time of task is calculated using equation 10

 𝑅 = 𝑎 + 𝐸 (10)

where 𝑅 denotes the response time, also 𝑎 denotes the arrival

time of task 𝑡𝑖, and 𝐸 denotes the execution time of tasks 𝑡𝑖on

virtual machine 𝑣𝑚𝑗.

The makespan time of tasks can be calculated using equation

11

 𝑀 = ∑ 𝐸𝑗 + 𝑡𝑛
𝑗=1 (11)

where 𝑀 denotes the makespan time, 𝑡 denotes the task transfer

time, 𝐸𝑗 denotes the execution time of tasks.

The average resource utilization ratio of resources can be

calculated using equation 12 and equation 13. The limits of the

average resource utilization ratio are from 0 to 1, maximum

value for ARUR is 1(resource utilization is 100%) and the

worst value is 0 (resource is in ideal condition).

 𝑈 = (𝑚
𝑀⁄) (12)

Given that 𝑚 = ∑
𝑓𝑗

𝑑
⁄𝑛

𝑗=1 (13)

where 𝑈 denotes the average resource utilization ratio, 𝑚

denotes mean time, 𝑀 denotes makespan time, 𝑓 denotes the

time taken by resource 𝑣𝑚𝑗 to finish all the jobs, 𝑑 denotes the

number of resources.

The throughput value is also calculated using equation 14

 𝑃 = ∑ 𝐽𝑖
𝑖
0 (14)

where 𝑃 denotes the throughput value, 𝐽 denotes the job. The

load balancing algorithm also calculates the task migration time

and then adds it to the makespan time of the particular virtual

machine that is executing the task. After submitting the entire

task, the makespan time is now calculated.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

6

Notation of symbols

UVM[]= under loaded virtual machine array,

BVM[] = balanced virtual machine array,

OVM[] = overloaded virtual machine array,

UM = under loaded machine,

OM = overloaded machine.

Cloudlet Scheduling Operation

1. Get N number of task, and Sort it in decreasing order.

2. Get M number of the virtual machine, and Sort it in decreasing order of processing speed.

3. For ∀ 𝑇𝑖 𝜖 0 𝑡𝑜 𝑁 − 1 and virtual machine 𝑅𝑗 ∈ 0 𝑡𝑜 𝑀 − 1.

4. Begin to assign task in a First come first serve order.

End VM for loop, End task for loop

Load Balancing on Virtual Machine

5. Begin the for loop i=0 to VmSize-1 and cloudlet loop k=0 to CloudletSize-1

6. Get the load L and capacity of all virtual machine using the equations.

7. If (𝐿 > 𝐶), load balancing on virtual machine cannot be possible, then use elasticity, otherwise start to check each VM.

8. Get the number of under loaded VM, balanced VM and overloaded VM.

 // UM, OM are variable UM=𝐶𝑉𝑀 ∗ . 25, OM=𝐶𝑉𝑀 ∗ . 8,

9. Get the VM to transfer the task on to,

Sort UM in increasing order and OM in decreasing order

The operation of transferring task

10 While OM!=∅ && UM!=∅,

Begin For loop for OM

If OM & UM exist, then transfer the tasks from OM to UM

𝑇𝑖→ 𝑉𝑀𝑗 | Until load at 𝑉𝑀𝑗 ≤ 𝑂𝑀|| 𝑉𝑀𝑗 ≥ 𝑈𝑀

Also, calculate the transfer time of task (𝑇𝐿𝑖 / bandwidth).

11. Check the status of each VM, If there is any virtual machine that is still in overloaded condition, then repeat load balancing

operation.

Fig. 4: Virtual Machine Load Balancing Algorithm

Figure 5 shows the class diagram of entities in HiCloud and their relationship

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

7

4. SYSTEM IMPLEMENTATION,

 RESULTS AND EVALUATION

4.1 System Implementation
The proposed system HiCloud was implemented using

CloudSim toolkit 3.0 version which is written in java language.

The software specification includes CloudSim toolkit 3.0

version, Java programming language, JCreator IDE. The

hardware specification is Intel(R) core i3, CPU M370 @

2.40GHz processor, 6GB RAM, 64-bit system, 500GB Hard

disk and Windows 7 ultimate edition.

4.2 Simulation of the System
The simulation was carried out with different input values to

show the efficiency of the system developed as shown in Fig.

6. A total of 4 userbase modelled a group of users in four

geographical regions. Group of users were contained within a

time zone and assumed that most users used the application

during working hours for about 2 hours within the 8GMT to

6GMT. Assuming that one-tenth of simultaneous online users

during the peak hours was online during the off-peak hours and

each user made a new request every 5 response time, makespan

time and utilization ratio after each simulation period. minutes

when online. This implies that a total of 24 request/2hr was

made and the data size of each request is 100byte/request. The

hardware components of HiCloud were modelled into ‘main

configuration’, ‘data center

configuration’ and ‘advanced’ as shown in Fig. 6, 7 and 8.

The metrics and parameters of hardware specification used in

modelling cloud network in HiCloud simulator are shown in

Table 1. The value for each component according to their

configuration in Table 1 was inputted and simulated to generate

the execution time, response time, makespan time and

utilization ratio after each simulation period.

VmLoadBalancer

Simulation

- dataCenter: List

- userBases: List

- simulationTime: double

- serviceBrokerPolicy: String

- loadBalancePolicy: String

- userGroupingFactor: int

- dcRequestGroupingFactor: int

- instructionLenghtPerRequest:

int

+ runSimulation(): void

Cloudsim.CloudSim

gui

<Interface>

GeoLocatable

getRegion(): int

DataCenterController

- region int

- costPerVmHr: double

- costPerDataGB: double

- totalDataTransferred: double

- vmUsage: Map

- vmStates: Map

- cloudletStates: Map

- loadBalancer: VmLoadBalancer

+ body(): void

- handleReuest(cl: InternetCloudlet):

void

- handleResponse(cl:

<Abstract>

vmLoadBalancer

- vmAllocations: Map

+ getNextAvailableVm():

int

RoundRobin

VmLoadBalance

r

Throttled

VmLoadBalancer

Cloudsim <Singleton>

- internetCharacteristics

- latencyMatrix: double[][]

- bwMatrix: double[][]

- entityLocations: Map

- allEntities: List

- trafficLevels: Map

- serviceLatencies: Map

+ getPingDelay(src:String, dest String): double

+ getDataTransferDelay(src, dest): double

+ getTotalDelay(src: String, dest: String):

double

+ getProimityList(region: int): List

+ UpdateServiceLatency(dc: String, t: double):

void

Internet

serviceBrokers: Map

body(): void

processEvent(e: Sim_event): void

<Interface>

CloudAppServiceBroke

r

getDestination(inquirer.

GeoLocatable): String

Cloudsim.Cloudlet

InternetCloudlet

appId: int

originator.Geolocatable

requestCount int

UserBase

Region: int

peakHrs: double[]

peakAvgUsers: int

offPeakAvgUsers: int

instLenPerReq: int

reqDataSize: long

userGroupingFactor: int

app: Application

responseHandler:

ResponseHandler

body(): void

Cloudsim.CloudSim
Response
Handler

Body(): void

Closest Data
Center
ServiceBroker

BestResponse

TimeServiceBroker

Optimize

Execution

Time

ServiceBroker

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

8

Fig. 6: Graphical User Interface of HiCloud

Fig. 7: Graphical User Interface of HiCloud

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

9

Fig. 8: Graphical User Interface of HiCloud

Table 1 Parameters and values used in HiCloud

Parameter Value

Size of VM 1000MB

VM Memory 1024MB

VM Bandwidth 1000MB

DC – Architecture x86

DC – OS Linux

DC- VMM Xen

DC–No of Machines 100

DC- Memory/ Machine 512GB

DC- Storage/ Machine 1TB

DC- Available Bandwidth/ Machine 1000MB

DC- No of Processors/ Machine 4

DC – Processor Speed 10000MIPS

DC – VM Policy Time Shared

User Grouping Factor 1000

Request Grouping Factor 100

No of instruction per request 250

No of Userbase 4

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

10

4.2 Experiment Result
In the experiment 1, ten scenarios were examined. In scenario

one 10 virtual machines were used, in the scenario two 20

virtual machines were used, up till scenario 10 were 100 virtual

machines were used. In experiment 1 an application was

accessed by ten thousand (10,000) users with a different

number of virtual machines ranging from 10, 20, …100; across

4 data centers with closest data center service broker and

throttling load balancer. The performance of the data centers

revealed that at 10VMs the response time was 100.31ms, at

20VMs the response time reduced to 95.60ms and when the

VM got increased to 50VMs the response time of the cloud

network became 83.67ms. Also at100VMs the response time

got reduced to 60.95ms as shown in Table 2. The performance

of experiment 1 shows a reduction in response time when the

number of virtual machines are increased. This implies that for

better performance the number of VMs per data center should

be much to fasten the response time of the network.

Table 2 Experiment 1 Result using closest datacenter and throttling load balancer

Scenario No of Users No of VM/4 data center with

closest data center and throttling

Average response time

(milliseconds)

Average execution time (milliseconds)

1 10,000 10 100.31 39.7

2 10,000 20 95.60 31.58

3 10,000 30 91.57 30.47

4 10,000 40 87.25 29.75

5 10,000 50 83.67 28.46

6 10,000 60 80.59 27.30

7 10,000 70 76.33 26.47

8 10,000 80 72.55 25.89

9 10,000 90 70.11 24.62

10 10,000 100 60.95 23.74

In experiment 2 an application was accessed by ten thousand

(10,000) users with a different number of VMs ranging from

10, 20,…100; across 4 data centers with optimize execution

time service broker and throttling load balancer. The

performance of the data centers shows that at 10VMs the

response time was 59.68ms, at 20VMs the response time

dropped to 56.37ms and when the VM got increased to 50VMs

the response time of the cloud network became

45.50ms. Also at100VMs the response time was 29.90ms as

 shown in Table 3. The performance of experiment 2 shows a

reduction in response time compared to experiment 1, this was

due to allocating tasks to the data center with minimum

execution time. This means that for better performance

optimize execution time service broker should be employed in

a cloud network. Hence the use of optimizing execution time

as service broker policy in the proposed system will speed up

the response time of the cloud network.

No of data center 4

Established number of virtual machines 50

ServiceBroker Optimize execution

time

Vmloadbalancer Task Migration

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

11

Table 3 Experiment 2 Result using optimize execution time service broker and throttling load balancer

Scenario No of

users

No of VM/4 data center with

optimized execution time and

throttling

Average response time

(milliseconds)

Average execution time

(milliseconds)

1 10,000 10 59.68 31.69

2 10,000 20 56.37 30.76

3 10,000 30 52.99 29.40

4 10,000 40 48.89 27.90

5 10,000 50 45.50 25.90

6 10,000 60 41.36 23.76

7 10,000 70 38.96 21.60

8 10,000 80 37.50 19.59

9 10,000 90 32.68 18.40

10 10,000 100 29.90 17.20

In experiment 3 an application was accessed by ten thousand

(10,000) users with a different number of virtual machines

ranging from 10, 20, …100; across 4 data centers with optimize

execution time service broker and task migration load balancer.

The performance of the data centers shows that at 10VMs the

response time was 32.79ms, at 20VMs the response time

dropped to 31.58ms and when increased to 50VMs the response

time of the cloud network became 28.46ms. Also at100VMs

the response time was 23.74ms as shown in Table 4. The

performance of experiment 3 shows a

high reduction in response time compared to experiment 1 and

2, this was due to allocating tasks to the data center with

minimum execution time and dynamically migrates load from

overloaded virtual machines to the under loaded virtual

machines for faster processing. This means that; for better

performance optimize execution time service broker and task

migration load balancer should be used in a cloud network.

Hence the use of optimizing execution time as service broker

policy and task migration load balancer in the proposed system

will speed up the response time.

Table 4. Experiment 3 Result using optimize execution time service broker and task migration load balancer

Scenario No of

users

No of VM/4 data

center with

optimized execution

time and task

migration

(milliseconds)

Average

response time

(milliseconds)

Average

execution time

(milliseconds)

Average

makespan time

(milliseconds)

Average

utilization

ratio

(percentage)

1 10,000 10 32.79 18.65 1.80 0.95

2 10,000 20 31.58 17.22 2.73 0.90

3 10,000 30 30.47 16.78 3.62 0.80

4 10,000 40 29.75 15.36 4.55 0.70

5 10,000 50 28.46 14.84 5.45 0.60

6 10,000 60 27.30 13.93 6.37 0.50

7 10,000 70 26.47 12.82 7.31 0.40

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

12

8 10,000 80 25.89 11.25 8.28 0.30

9 10,000 90 24.62 10.93 9.21 0.20

10 10,000 100 23.74 9.95 10.14 0.10

4.3 Comparison of Experiment 1, 2 and 3 In

comparing the three experiments; with 10VMs and 10,000

users as shown in Table 5, the response time of the cloud

network in experiment 1 reduces from 100.31 milliseconds to

59.68 milliseconds in experiment 2 and the execution time also

reduces from 39.7 milliseconds to 31.69 milliseconds in

experiment 2 due to the use of optimized execution time service

broker policy. The better performance is now compared to the

result of experiment 3. The response time of experiment 2

which was 59.68 milliseconds reduced to 32.79 milliseconds in

experiment 3 and the execution time also reduces from 31.69

milliseconds to 18.65 milliseconds as a result of deploying the

task migration load balancer policy. Hence the big distance

between the curves in Fig. 9 and Fig.

10. When 50VMs and 10,000 users were experimented, the

response time reduces from 83.67 milliseconds in experiment

1 to 45.50 milliseconds in experiment 2 and reduces to 28.46

milliseconds in experiment 3. The huge difference in the

execution time of experiment 3 shows the efficiency of the task

migration load balancer compared to experiment 1 and 2 when

50VMs were deployed. The performance of the cloud network

with 90VMs in experiment 2 is what is being recorded when

10Vms were deployed in experiment 3. This is due to the use

of optimizing execution time service broker and task migration

load balancer. This means that the use of a larger number of

VMs is of no importance once an optimize execution time

service broker and task migration load balancer is deployed in

the cloud network.

Table 5. Comparison of Experiments 1, 2 and 3 with 10,000 Users and 4 Data Centers

 Experiment 1 Experiment 2 Experiment 3

 Closest Data Center and

Throttling

Optimize execution time

and Throttling

Optimize execution time and Task Migration

No

of

VM

No of

Users

Avg. Resp.

Time(ms)

Avg.

Exe.

Time(ms)

Avg. Resp.

Time(ms)

Avg.

Exe.

Time(ms)

Avg.

Resp.

Time(ms)

Avg.

Exe.

Time(ms)

Avg.

Mksp.

Time(ms)

Util.

Ratio

10 10,000 100.31 39.7 59.68 31.69 32.79 18.65 1.80 0.95

20 10,000 95.60 31.58 56.37 30.76 31.58 17.22 2.73 0.90

30 10,000 91.57 30.47 52.99 29.40 30.47 16.78 3.62 0.80

40 10,000 87.25 29.75 48.89 27.90 29.75 15.36 4.55 0.70

50 10,000 83.67 28.46 45.50 25.90 28.46 14.84 5.45 0.60

60 10,000 80.59 27.30 41.36 23.76 27.30 13.93 6.37 0.50

70 10,000 76.33 26.47 38.96 21.60 26.47 12.82 7.31 0.40

80 10,000 72.55 25.89 37.50 19.59 25.89 11.25 8.28 0.30

90 10,000 70.11 24.62 32.68 18.40 24.62 10.93 9.21 0.20

100 10,000 60.95 23.74 29.90 17.20 23.74 9.95 10.14 0.10

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

13

Fig. 9: Analyzing response time of experiment 1, experiment 2 and experiment 3

Fig. 10: Analyzing the execution time of experiment 1, experiment 2 and experiment 3

4.4 Critical Evaluation of Results

The result of experiment 1 shows that when 10,000 users use

the cloud network with 10VMs using closest data center and

throttling. The execution time was 39.7 milliseconds and the

response time was 100.31 milliseconds, which is high

compared to 31.69 milliseconds and 59.68 milliseconds when

optimizing execution time and throttling was used in

experiment 2. The result of optimizing execution time and task

migration is the best as shown in experiment 3, with an

execution time of 18.65 milliseconds and response time of

32.79 milliseconds. This result got better when the number of

VMs got increased to 50VMs. The execution time dropped to

14.84ms and the response time reduces to 28.46 milliseconds.

Both execution and response time of the proposed system

decreases as several virtual machine increases to 100VMs but

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

14

the makespan time increases because of the time taken to

balance the load over virtual machines. Therefore to have an

effective network a Cloud network of 50VMs with optimize

execution time and task migration policy is established since at

this point execution time, response time and the makespan time

is minimized and also resource utilization ratio is optimized.

4.5 Comparative Analysis with Other Works

The metrics used in the existing systems were used in the

developed system. With 10,000 users, optimize execution time

service broker and task migration load balancer; the

comparison generated is shown in Table 4.7. When the

established configuration of [9] was inputted into the developed

system the response time was 78.27 milliseconds instead of

125.07 milliseconds derived in CloudAnlyst. Also, when the

established configuration of [10] was inputted into the

developed system the response time was 31.14 milliseconds

instead of 60.73 milliseconds for the iCanCloud. When the

established configuration of [16] was inputted into the

developed system the response time was 23.84 milliseconds

instead of 45.6 milliseconds gotten in CloudSim. These results

shows that iCloud has better performance value compared to

existing systems.

5. CONCLUSION AND

RECOMMENDATION
Cloud computing and its characteristics have been discussed in

this thesis. This research work present HiCloud: a new

simulation tool that allows seamless modelling, simulation, and

experimenting with emerging cloud computing infrastructures

and application services. The developed system allocates tasks

to the data center with minimum execution time and schedules

tasks to virtual machines using the task migration approach that

dynamically balance the load. Experimental results revealed

that the developed system has a better quality of system load

balancing and the utilization of system resources. Researchers

and industry-based developers can use HiCloud to test the

performance of a newly developed application service in a

controlled and easy to set-up environment. The performance

testing of HiCloud simulator is time effective. Developers can

easily model and test the performance of their application

services in Cloud environments with minimum performance

time and utilization ratio maximized. Security models can be

introduced to the toolkit to strengthen the cloud computing

paradigm.

6. ACKNOWLEDGEMENTS
This journal is an extract from my PhD thesis in the year 2021.

Many thanks to my Supervisor Prof. O. S. Adewale for his

effective supervision, care, patience and understanding at

different stages of this research work. It has been God and you

sir all the way. I also appreciate my Co-supervisor Dr. (Mrs.)

F. M. Dahunsi for her contributions and encouragement. May

God bless you; bless all your endeavors and your families.

7. REFERENCES
[1] Ye Z., Liu S., Yin Y., Jin Y., (2017). User-Oriented Many-

Objective Cloud Workflow Scheduling Based on an

Improved Knee Point Driven Evolutionary Algorithm.

Journal of Knowledge Based Systems. 12(4), 16-24.

[2] Chou F., and Chou D., (2015). Cloud Computing from the

Perspective of System Analysis.International Journal of

Engineering Research and Applications (IJERA), 3(5),

100-115.

[3]Mohamad R. P., Kolovos D. S., and Paige R. F., (2014).

Cloud Computing Workload and Capacity Management

Using Domain Specific Modelling. 14th International

Conference on Modelling and Simulation. IEEE DOI

10.1109/UkSim.2014.1

[4] Kashikolaei S. M. G., HosseinabadiA. A. R., Saemi B.,

Shareh M. B., Sangaiah G. B. (2019). An enhancement of

task scheduling in cloud computing based on imperialist

competitive algorithm and firefly algorithm. The Journal

of Supercomputing. https://doi.org/10.1007/s11227-019-

02816-7

[5] Arabnejad V., Bubendorfer K., and Bryan N. (2017).

Scheduling deadline constrained scientific workflows on

dynamically provisioned cloud resources. Future

Generation Computer Systems. 14(7), 56-63.

[6] Develder G., Kumar H., and Bhoi F., (2016). Dimensioning

Resilient Optical Grid / Cloud Networks. Journal of

Computers. 53(4), 50-58.

[7] Owoseni M. T., (2014). Design of Government Cloud

Network: Case Study Ondo State. Nigerian Journal of

Technology (NIJOTECH). 35(3),608-617.

[8] Calheiros R. N., Ranjan R., De Rose C. and Buyya R.,

(2009). CloudSim: A Novel Framework for modelling and

Simulation of Cloud Computing Infrastructures and

Services. International Journal of Advanced Research in

Computer Science and Software Engineering, 20(7) 67-

77.

[9] Wickremasinghe B., Virogho D., and Joane F., (2010).

CloudAnalyst: A CloudSim-basedVisual Modeller for

Analysing Cloud. Journal of IEEE Computer Society,

16(10), 1-12.

[10] Nunez A., Vazquez-Poletti J.L., Caminero AC and Castre

G.G. (2016). iCanCloud: A Flexible and Scalable Cloud

Infrastructure Simulator. Journal of Grid Computing,

35(4), 30-38.

[11] Talavera O. and Santisteban R. (2015). Design of Network

Infrastructure of a Cloud Data Center for Use in Health

Sector. International Journal of Engineering and

Technology (IJET).15(8), 141-150.

[12] Mehra T. (2012). Designing and Building a Datacenter

Network: An Alternative Approach with OpenFlow. IDC,

Analyze the Future. Future Generation Computer

Systems, 56(10), 339-347.

[13] Taifi, G., Lu, H., and Bou J. (2013). Building a rivate HPC

Cloud for Compute and Data-Intensive Applications.

International Journal on Cloud Computing: Services and

Architecture, 13(2), 145-154.

[14] Babaoglu O., Moreno M., and Tamburini M., (2012).

Design and Implementation of Peer-to-Peer Cloud

System. Università di Bologna, Dipartimento di Scienze

dell’Informazione Mura A. Zamboni 7(5), 52-59.

[15] Nayak S. C., Sasmita Parida S., Tripathy C., and Pattnaik

P. K., (2018). An enhanced deadline constraint based task

scheduling mechanism for cloud environment. Journal of

King Saud University –Computer and Information

Communications on Applied Electronics (CAE) – ISSN : 2394-4714
Foundation of Computer Science FCS, New York, USA
Volume 7 – No. 39, August 2023 – www.caeaccess.org

15

Sciences, 7(1), 33-42.

https://doi.org/10.1016/j.jksuci.2018.10.009

[16] Elsherbiny S., Eldaydamony E., Alrahmawy M., and

Reyad E. A., (2017). An extended Intelligent Water Drops

algorithm for workflow scheduling in cloud computing

environment. Egyptian Informatics Journal. 19(10), 21-

29.

[17] Singh V., Gupta I., Prasanta K. Jana P. K., (2017). A Novel

Cost-Efficient Approach for Deadline-Constrained

Workflow Scheduling by Dynamic Provisioning of

Resources. Future Generation Computer Systems 14 (4),

39-47.

[18] Shishido H. Y., Estrella J. C., Toledo C. F. M., Arantes,

M. S., (2017). Genetic-based algorithms applied to a

workflow scheduling algorithm with security and deadline

constraints in clouds. Journal of Computers and Electrical

Engineering. 12(10), 15-24.

[19] Mehmi S., Harsh K., Vermab A.L., and Sangal T., (2017).

Simulation modelling of cloud computing for smart grid

usingCloudSim. Journal of Electrical Systems and

Information Technology 4 (10), 159–172.

http://dx.doi.org/10.1016/j.jesit.2016.10.004

[20] Chen W., Xie G., Li R., Bai Y., Fan C. and Li K., (2017),

Efficient task scheduling for budget constrained parallel

applications on heterogeneous cloud computing systems.

Future Generation Computer Systems 14(1), 1-8.

[21] Adhikari M., Amgoth T., and Srirama S. N., (2019). A

Survey on Scheduling Strategies for Workflows in Cloud

Environment and Emerging Trends. Future Generation

Computer Systems 68(4), 1-36.

https://doi.org/10.1145/3325097

[22] Choudhary A., Gupta I., Singh V., and Jana P. K., (2018).

A GSA based Hybrid Algorithm for Bi-objective

Workflow Scheduling in Cloud Computing. Future

Generation Computer Systems 13 (17), 29-39.

[23] Igor L. S., Luci P., Flavia C., Delicato H., Gabriel M., O.,

Claudio M. F., Samee U. K., Albert Y. Z., (2019). Zeus:

A resource allocation algorithm for the cloud of sensors.

Future Generation Computer Systems. 92 (20), 564-581.

[24] Wang W., Zeng G., Tang D., and Yao J., (2017). Cloud –

DLS: Dynamics Trusted Scheduling For Cloud

Computing.Journal of Expert System with Applications.

40(16), 2310-2317.

[25] Seenuvasan P., Kannan A., and Varalakshmi P. (2017).

Agent-Based Resource Management in a Cloud

Environment. Journal of Applied Mathematics &

Information Sciences, 11(3), 777-788

[26] Er-Raji N., Benabbou F. and Eddaoui A., (2016). Task

Scheduling Algorithms in the Cloud Computing

environment: Survey and Solutions. International Journal

of Advanced Research in Computer Scienceand Software

Engineering, 6(1), 604-608.

