

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

8

Qualitative Assessment of Compiled, Interpreted and

Hybrid Programming Languages

Ampomah Ernest Kwame
Computer Science Department,

Christian Service University
College

Santasi-Kumasi, Ghana

Ezekiel Mensah Martey
Department of Information and
Communication Technology,
Christ Apostolic University

College
Kwadaso-Kumasi, Ghana

Abilimi Gilbert Chris
Computer Science Department,

Christian Service University
College

Santasi-Kumasi, Ghana

ABSTRACT

 Programmers use programming languages to develop

software. But how efficiently programmers can write software

depends on the translation mode that is used by them. In

computing, the general modes of execution for modern high-

level languages are interpretation, compilation and hybrid.

The selection of these general modes of execution is

dependent on the choice of programming language. In this

paper, the study compared compiled, interpreted and hybrid

programming languages under translation process, execution,

efficiency, portability, maintainability, and security. The

paper contains idea about how software development are

influenced by the decision to use compiler, interpreter or

hybrid as a mode of translation hence purpose of this research.

It was observed that compiled, interpreted and hybrid

programming languages have their strengths and weakness,

hence the need for programmers to critically analyzed their

goal and how the various programming languages will help to

achieve that goal before choosing a language.

Keywords

Compiled, Interpreted, Hybrid, Programming Language,

1. INTRODUCTION
Computers have become one of the most essential devices

needed for human existence. However, they are useless

without a computer program. A computer requires a program

to be able to perform a task. A computer program can be

described as a set of instructions that follow the rules of the

programming language been used. A program has statements

and may contain variables that tell the computer what it

should do with the variables [18]. In recent times, almost all

programs are written in high-level programming languages.

High-level language programs cannot be run directly on by

the central processing unit (CPU) of the computer rather it has

to be translated into machine language, hence, the need to

translate high level language instructions called source code

into machine code which can be understood by the computer

[23]. Translation of source code into machine code is

accomplished by using compiler or interpreter. As a result,

there are compiled, interpreted and hybrid high level

programming languages. This paper compared these three

kinds of high level languages qualitatively pointing out their

mode of operation, merits and demerits

1.1 Programming Language
Programming languages are used to write computer programs

such as applications, systems programs and utilities.

Programmers and developers use programming language to

develop software programs and other sets of instructions for

computers to execute. There are three levels of programming

language and these are machine language (which is classified

as Low-level language), Assembly language (which is also

classified Low-level language) and High-level language [25].

 1.1.1 Machine Language
Machine language comprises of collection of binary digits or

bits that the computer reads and interprets without the need

for translation. Hence, it is the language a computer

understands [16]. Machine language is designed to be

recognized by a computer and can be described as basic type

of low-level programming language. The machine language

program is written in a binary code of 0s and 1s that represent

electric impulses or off and on electrical states respectively. A

group of such digits is called an instruction and it is translated

into a command that the CPU understands [1]. Every

computer has its own kind of machine language, and the

computer can directly execute a program without the need for

translation if only the program is expressed in that language.

A computer can execute programs written in other languages

if they are first translated into machine language by a

language translator [9]. Instructions contained in machine-

language causes the CPU of the computer to perform

operations such as an arithmetic calculation or storing data in

the random access memory of the computer.

1.1.2 Assembly Language
Assembly Language is an intermediary programming

language between machine language and a high-level

language. It is classified as low-level programming language

that is made up of instructions that are mnemonic codes for

corresponding machine language instructions [13]. Assembly

language are used by programmers to directly create

instruction code programs without having to worry about the

various instruction code set combinations on the processor.

The mnemonics enables the programmer to use English-style

words to represent individual instruction codes and they can

easily be translated to the machine language instruction codes

by an assembler [28]. Assembly language programs are non-

portable; a program must be rewritten to run on a different

machine. An assembly language program has three

components that are used to define the program operations

and these are Opcode mnemonics, Data sections and

Directives [8]. To help facilitate writing the instruction codes,

assemblers equate mnemonic words with instruction code

functions, such as moving or adding data elements. Instead of

having to know what each byte of instruction code represents,

the assembly language programmer can use easier-to-

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

9

remember mnemonic codes, such as push, mov, sub and call,

to represent the instruction codes [7].

1.1.3 High Level Language
A high-level language is a programming language that permits

development of a program in a more user-friendly

programming context. High level language resembles human

language or notation used in mathematics [24]. Programming

in machine and assembly language are tiresome and the

process is error-prone. Hence, most programming are done

using a high-level programming languages. Using high level

languages make programs easier to read, write, and maintain

than assembly and machine languages. A high-level language

has a higher level of abstraction from the computer and it

allows programmers to concentrate on the programming logic

rather than the underlying hardware components such as

memory addressing and register utilization [20] A high-level

language does not require addressing hardware constraints

when developing a program. However, high-level language

programs must be translated into machine language by a

compiler or interpreter before the computer can execute the

program [6].

2. METHODOLOGY
A comparison between interpreted, compiled and hybrid

programming languages were done on the basis of the

following parameters: translation process, portability,

execution efficiency, maintainability, safety.

2.1 Translation process
Translation process is the process that a source code written in

a high level programming language undergoes before it is

converted into a low level machine language. Translation

process is different for the various translators for converting

source code to machine code.

2.1.1 Compiled Language
A compiler translates the source code to machine code for a

particular platform. The source code is translated into the

computer’s native language up front by the compiler, before

the execution of the program [27]. Program compilation is a

two-step process which are the compiling step and the linking

step [22]. Compiling step produces an intermediate file, often

called as object code file. This file has instruction codes that

represent the core of the application functions. Every line of

the source code are matched up with one or more instruction

codes pertaining to the specific processor on which the

application will run. Examples of compiler programming

languages include C, C++. The linking step uses a linker to

link the object code file with other object files needed by the

application, and creates the final executable output file. The

linker’s output is an executable file that runs only on the

operating system for which the program is written [7]. As

shown in figure 2.1, a compiler internal architecture consists

of a front-end layer, an intermediate layer, and a back-end

[12]. The compilation process is categorized into several

phases with well-defined interfaces. The phases operate in

sequence, and each phase uses the output from the preceding

phase as its input. A common division into phases is as

follows [26]:

 Lexical analysis: this phase comprises of the initial

part of reading and analyzing the program text: The

text is read and divided into tokens, each of which

corresponds to a symbol in the programming

language.

 Syntax analysis: in this phase the list of tokens

produced by the lexical analysis are taken and

arranged in a tree-structure known as the syntax tree

that reflects the structure of the program. This phase

is often called parsing.

 Type checking: during this phase the syntax tree are

analyzed to determine if the program violates

certain consistency requirements.

 Intermediate code generation: there is translation of

the program to a simple machine independent

intermediate language.

 Register allocation: in this phase, there is translation

of symbolic variable names used in the intermediate

code into numbers, and each of them corresponds to

a register in the target machine code.

 Machine code generation: the intermediate language

is translated to assembly language for a specific

machine architecture.

 Assembly and linking: this phase translate the

assembly-language code into binary representation,

and the addresses of variables, functions and others

are determined

2.1.2 Interpreted Language
Translation of source code of an interpreted language does not

happen in advance. Translation occurs concurrently with the

execution of the program. The interpreter starts interpreting

each instruction instantly upon execution. Hence, the source

code of an interpreted language is executed directly on the

target platform by an interpreter [10]. The interpreter converts

source code into machine code line by line each time the

program is executed. Figure 2.2 shows the structure of an

interpreter for a textual programming language. The

translation steps of an interpreter are as follow [22]:

 Lexical analysis which involves transforming

stream of characters into a stream of recognized

tokens.

 Syntactical analysis which follows lexical analysis

and produces an abstract representation of a

program.

 The semantics of a program is then analyzed, based

on the constructions of the source language to

generate an annotated representation.

 The abstract representation is evaluated on some

given input data. The result of executing the

interpreter is the program’s output data. Python is

an example of an interpreted programming

language.

2.1.3 Hybrid Language
Hybrid language make use of both compilation and

interpretation to execute the source code. The source code is

first compiled into what is known as byte code. Bytecode

describes computer object code that a program known as a

virtual machine processed rather than the computer’s

processor [17]. Bytecode is kept in a dot (.) class file format.

Virtual machine (VM) which is an interpreter uses the dot

class as input to produces output by executing the bytecode.

The byte code is interpreted by a Virtual Machine which runs

separately on the host computer. Java and C-Sharp are some

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

10

examples of hybrid programming language [5].

2.2. Portability
Portability measures the easiness an application can be moved

from one computer environment to another. That is the

usability of the same application in different environments.

2.2.1 Compiled Languages
A compiler translates source code into a machine code that is

specific to the target machine. Hence it has a low portability

[18]. For instance, a compiled program for Intel Core 2 Duo

will not work for Intel Pentium 4. A programmer must

produce several versions of source code for the same

application when getting a product out to the market. This

causes the programmer to spend more time and resources on

source code maintenance and updates.

2.2.2 Interpreted Language
An interpreter converts source code into machine code one

line at a time, each time the program is executed. The source

code is executed directly on the target platform by the

interpreter [23]. Hence Interpreted languages are highly

portable across different kinds of hardware. Executable

shipped to every platform is the same.

2.2.3 Hybrid Language
Output of a Hybrid Language compiler is known as byte code.

This is a non- executable code. Run-time system known as

Virtual Machine which is an interpreter executes the bytecode

[10]. The Translation of a source code into bytecode permits

programmers to run a program in different kinds of

environments since only the VM needs to be implemented for

the different platforms. Hence Hybrid Language is portable.

Figure 1: Architecture of Compiler [13]

Executable

program

movl %edi, -

4(%rbp)

movl -

4(%rbp),

%eax

addl $1,

%eax

movl %eax, -

12(%rbp)

movl -

12(%rbp),

%eax

movl %eax, -

8(%rbp)

movl -

8(%rbp),

%eax

popq %rbp

ret

!

assembler/linker

register

allocation

Optimizer

intermediate

language

define i32

@f(i32 %x)

nounwind

readnone ssp

{

entry:

%0 = add nsw

i32 %x,1

ret i32 %0

}

!

Semantical

Analyzer

Syntactic Analyzer

Source

Program

int f(int x) {

return x+1;

Lexical Analyzer

Instruction

selection

instruction

selection

tokens

abstract

syntax

tree (AST)

Annotated AST

Intermediate

language

AST

token

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

11

--

Figure 2: The architecture of an interpreter [13]

2.3 Execution Efficiency
The time during which a program is running is termed as

Execution or run time. Hence, execution efficiency of a

programming language is the ability of programs written in

that language to execute within a reasonable amount of time.

2.3.1 Compiled Language
The compiler translate the source code into platform specific

machine code [27]. Since the source code is converted into

platform specific machine code, the execution of the code

does not require any more translation, and hence compiled

languages run significantly faster and more efficiently.

2.3.2 Interpreted Language
An interpreter reads each line of the source code and execute

the required task [23]. The time used by interpreter to read

and execute the source code delays the execution of the

program. Also the source program is always translated fresh

every time it is used [21], and this slow the process causing

execution to take more time.

2.3.3. Hybrid Language
In hybrid languages, during the initially running of the

program the source code is compiled into bytecode [15].

Hybrid programs tend to perform slower than equivalent

programs written in compiled languages since the bytecode

must be interpreted by the VM when the program is run.

However, the execution speed of hybrid languages are

significantly higher compared to interpreted languages since

the bytecode is optimized for the interpreter.

2.4 Maintainability
Maintainability is a measures of the easiness to understand,

repair or improve a computer program or application.

2.4.1 Compiled Language
Compiled language is static typed language and hence errors

in programs are detected at the compilation stage. It provide

better documentation in the form of type signatures for

programmer intent [2].Maintainability of compiled language

programs is relatively easy.

2.4.2 Interpreted Language
Interpreted language is dynamic typed language and perform

type checking at runtime therefore errors are detected at

runtime. It also has a poor documentation [3]. Maintainability

of interpreted language programs are therefore difficult.

2.4.3 Hybrid Language
Hybrid language is a hybrid typed language and performs type

checking at both compilation stage and run time [14]. It has

good documentation and hence, maintainability is relatively

not as difficult as with interpreted languages.

2.5 Security
Security refers to ability to prevent unauthorized modification

of a program’s source code. Security is about confidentiality,

integrity, availability and authentication.

2.5.1 Compiled Language
The source code of compiled language can be kept private

[19]. The process of compilation breaks down the source code

into very low-level binary codes and the instructions are

tokens

AST

Output data
1001010101010101

0010101010100101

0101010101010101

0101010101101011

1101011010111010

0110001110101001

Interpreter

input data
1001010101010101

0010101010100101

0101010101010101

0101010101101011

1101011010111010

0110001110101001

source

Program

int f(int x) {

return x+1;

]

Lexical Analyzer

Syntactic Analyzer

Semantical Analyzer

Annotated AST

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

12

reordered [11]. There is clear distinction between executable

file and the source code, and that makes it somewhat more

secure.

2.5.2 Interpreted Language
For interpreted language, there is no distinction between the

executable file and the source code [11]. The source code is

public and available to everybody making it less secure as

malicious users can tamper with the source code.

2.5.3 Hybrid Language
The source code is compiled into intermediate bytecode which

is translated by the VM, hence the source code is distinct from

the bytecode [5]. This enhances the security of the source

code since it is not directly available to the public

3. EXPERIMENTAL ANALYSIS
Magnetic bubble sort algorithm [4] was implemented on C++,

Python and Java platforms which are compiled, interpreted

and hybrid programming languages respectively. The Central

Processing Unit (CPU) execution time for the Magnetic

bubble sort algorithm on these three languages were

compared. Visual Studio profilers was used to determine the

CPU execution time for C++ and Java and Python profiler

was used to obtain the execution time on python. Five

different data sizes 10000, 20000, 50000, 100000 and 150000

were used.

Table 1: CPU Execution Time for Magnetic Bubble Sort

Algorithm on C++, Python and Java

Data Size C++ Python Java

10000 3.72 9.08 4.96

20000 7.25 14.46 8.68

50000 18.19 43.21 20.59

100000 49.79 110.23 55.75

150000 98.32 179.63 108.32

Figure3: CPU Execution Time for Magnetic Bubble Sort

on Different Platforms

4. CONCLUSION
The study shown that both compiler and interpreter

programming languages have varying advantages and

disadvantages when used by programmers to write programs.

The interpreter technique is slow and inefficient, since lines of

code are repeated and translated while the program is running.

However, due to the fact that anytime interpreted language

program is run, the interpreter refers to the source code it is a

relatively easy to modify and rerun a piece of code or to move

the code to a computer environment different where it was

developed and run. Interpreters are very good development

tools since it can be easily edited, and are therefore ideal for

beginners in programming and software development.

However they are not good for professional developers due to

the slow execution nature of the interpreted code. On the other

hand the compiler technique translate the whole code into a

single machine code program and run this machine code.

Execution of code is very fast when using compiler technique,

however, the code cannot be executed on any other platform

apart from the one the code was developed on it. The hybrid

language combines both techniques and minimizes the

disadvantages associated with each of the two techniques

while maintaining the advantages they have to some degree.

Due to the high execution speed of both compiled and hybrid

languages, they are good for professional software developers.

5. REFERENCES
[1] Aggeliki K. (2011). Machine Language vs High-Level

Languages, Bright Hub Engineering; Retrieved: 2nd

April, 2017.

http://www.brighthubengineering.com/consumer-

appliances-electronics/115635-machine-language-vs-

high-level-languages/

[2] Agrawal, R., DeMichiel, L. G., & Lindsay, B. G. (1991).

Static type checking of multi-methods Vol. 26, No. 11,

pp. 113-128. ACM.

[3] Alpern, B., Cocchi, A., & Grove, D. (2001). Dynamic

Type Checking in Jalapeño. In Java Virtual Machine

Research and Technology Symposium.

[4] Appiah, O., & Martey, E. M. (2015). Magnetic Bubble

Sort Algorithm. International Journal of Computer

Applications IJCA, 122(21), 24-28. doi:10.5120/21850-

5168

[5] Arnold, K., Gosling, J., & Holmes, D. (2005). The Java

programming language. Addison Wesley Professional.

[6] Bates, P. C., & Wileden, J. C. (1983). High-level

debugging of distributed systems: The behavioral

abstraction approach. Journal of Systems and Software,

3(4), 255-264.

[7] Blum Richard, (2005). Professional Assembly Language,

Wiley Publishing, Inc. ISBN: 0-7645-7901-0

[8] Crary, K. (2003). Toward a foundational typed assembly

language (Vol. 38, No. 1, pp. 198-212). ACM.

[9] Eck David J., (2011). Introduction to Programming

Using Java, Hobart and William Smith Colleges,

Geneva, NY 14456.

[10] Gosling, J., & McGilton, H. (1995). The Java language

environment. Sun Microsystems Computer Company,

2550.

[11] Grillmeyer, O. (1998). Compilers and Interpreters. In

Exploring Computer Science with Scheme (pp. 319-372).

Springer New York.

[12] Jiménez, M., Palomera, R., & Couvertier, I. (2014).

Assembly Language Programming. In Introduction to

Embedded Systems (pp. 155-218). Springer New York.

[13] João Costa Seco, 2014, Interpretation and Compilation of

0

50

100

150

200

10000 20000 50000 100000 150000 T
im

e
(S

ec
o

n
d

s)

Data Size

C++

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

13

Programming Languages, Retrieved: 22nd May, 2017.

http://docentes.fct.unl.pt/sites/default/files/jrcs/files/ln01-

overview.pdf

[14] Knowles, K., & Flanagan, C. (2010). Hybrid type

checking. ACM Transactions on Programming

Languages and Systems (TOPLAS), 32(2), 6.

[15] Krauss Aaron, (2015). Programming Concepts:

Compiled and Interpreted Languages; Retrieved: 16th

May, 2017.

https://thesocietea.org/2015/07/programming-concepts-

compiled-and-interpreted-languages/

[16] Manson, K. S. (2006). U.S. Patent No. 7,085,708.

Washington, DC: U.S. Patent and Trademark Office.

[17] McInnes James, (2014). How is source code typically

kept secret?; Retrieved: 5th June 2017.

https://www.quora.com/How-is-source-code-typically-

kept-secret

[18] Morgan, C. (1994). Programming from specifications.

Prentice Hall.

[19] Najjar, W. A., Bohm, W., Draper, B. A., Hammes, J.,

Rinker, R., Beveridge, J. R., ... & Ross, C. (2003). High-

level language abstraction for reconfigurable computing.

Computer, 36(8), 63-69.

[20] Organ, D. V., Deome, M. E., Techasaratoole, R., &

Greene, V. N. (2001). Capturing and displaying

computer program execution timing." Washington, DC:

U.S.

[21] Redish, K. A., & Smyth, W. F. (1986). Program style

analysis: A natural by-product of program compilation.

Communications of the ACM, 29(2), 126-133.

[22] Rouse Margaret, (2005). Bytecode; retrieved: 16th May,

2017 http://whatis.techtarget.com/definition/bytecode

[23] Sanner, M. F. (1999). Python: a programming language

for software integration and development. J Mol Graph

Model, 17(1), 57-61.

[24] Schmidt, J. W. (1977). Some high level language

constructs for data of type relation. ACM Transactions

on Database Systems (TODS), 2(3), 247-261.

[25] Stroustrup, B. (2013). The C++ programming language.

Pearson Education.

[26] Torben Ægidius Mogensen, (2010). Basics of Compiler

Design, Anniversary edition, University of Copenhagen,

ISBN 978-87-993154-0-6.

[27] Watson, D. (2017). Compilers and Interpreters. In A

Practical Approach to Compiler Construction (pp. 13-

36). Springer International Publishing.

[28] Xi, H., & Harper, R. (2001). A dependently typed

assembly language. ACM SIGPLAN Notices, 36(10),

169-180.

