

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

1

Data Compression Methods and Analysis

Nazmun Nahar
Department of Computer Science & Engineering

Bangladesh, Dhaka

Md Jayedul Haque
Department of Computer Science & Engineering

Bangladesh, Dhaka

ABSTRACT

During the advanced era of modern science data has become a

salient part of research as well as other methodologies. Along

with the cumulative use of data, data redundancy has become

an ache for both user and researcher end. Not only

communication but also generic file compression technologies

are using different kind of efficient data compression methods

massively day by day. This paper concerns with a variety of

data compression methods with some efficient innovation.

The purpose of data compression is to wan redundancy in

stored or communicated data. Data compression has important

application in the area of file storage and distributed system.

This paper will provide an overture of several compression

methods and will formulate new methods that may improve

compression ratio and lessen error in the reconstructed data.

In this work the data compression techniques: Huffman, Run-

Length, LZW, LZW-Huffman, Huffman-LZW, Run-Length-

LZW and LZW-Run-Length are used to compress different

types of multimedia formats such as images and text, which

depicts the discrepancy of various data compression methods

on image and text file.

General Terms

Computer Networks, Data Structure, Algorithm.

Keywords

Lempel-Ziv-Welch (LZW), Huffman, Run-Length

1. INTRODUCTION
According to the nomenclature of data science, data

compression is considered as a technique of converting an

input data stream (the source stream or the original raw data)

into another data stream (the output, the bit stream, or the

compressed stream) that has a smaller size than before. A

stream can be a file, a buffer in memory, or individual bits

sent on a communications channel. The technique of reducing

the size of a data file is popularly considered to as data

compression. Compression has become effective because it

helps to reduce resources usage, such as data storage space or

transmission capacity. Since compressed data is decoded to

use, this extra processing causes computational or other costs

over decode. The sphere of data compression is often called

source coding by the data scientist. The input symbols (such

as bits, ASCII codes, bytes, audio samples, or pixel values)

are emitted by a certain information source and have to be

coded before being sent to their destination. There are two

types of compression, lossy and lossless. Lossy compression

reduced file size by abrogating some unneeded data that won’t

be recognize by human after decoding, this often used by

video and audio compression. On the other hand, lossless

compression manipulates each bit of data inside file to

minimize the size without losing any data after decoding.

2. LITERATURE REVIEW
In 1952 Huffman [10] coined an elegant sequential algorithm

which generates optimal prefix codes in O (nlogn) time. The

algorithm in fact requires only linear time providing that the

frequencies of appearances are sorted in advance. There have

been comprehensive researches on analysis, implementation

issues and improvements of the Huffman coding theory in a

variety of applications [11, 12]. In [13], they analyze one of

the coding techniques on OFDM, named Huffman coded

OFDM (HC-OFDM) that contributes not only to high data

rate but also prevents peak the signals when they sum up after

IFFT process, while decreasing the BER at 10-1. HC-OFDM

simulations reached valuable results on a big data stream

transmission and lower peak to average power ratio (PAPR)

probability over Rayleigh fading channel and phase offset

comparison at the detection which their BER and PAPR

values are smaller at and 3-4 db respectively than an uncoded

OFDM. A new multimedia functional unit for general-purpose

processors has been proposed [14] in order to increase the

performance of Huffman coding. After that In 1984 LZW

introduced a new compression technique. One of the lossless

data compression widely used is LZW data compression, it is

a dictionary based algorithm. LZW compression is named

after its developers, A. Lempel and J. Ziv, with later

modifications by Terry A. Welch [1]. Lempel-Ziv-Welch

(LZW) [1] this algorithm proposed by Welch in 1984. LZW

compression works best for files containing lots of repetitive

data. This is often the case with text as well as monochrome

images. LZW compression is fast comparing to other

algorithms. This algorithm is an improved implementation of

the LZ78 algorithm published by Lempel and Ziv in 1978

(LZ78) [2]. The first algorithm of Lempel and Ziv was

published in 1977 and it is named as LZ77 [3]. LZ-77 is an

example of what is known as "substitutional coding". The

LZ77 [3] and LZ78 [2] are otherwise called LZ1 and LZ2

respectively like The LZW algorithm uses dictionary and

index for encoding and decoding operation. In 2011 Senthil

Shanmugasundaram and Robert Lourdusamy[15] worked on

Statistical compression techniques and Dictionary based

compression techniques which was performed on text data. In

between the statistical coding techniques the algorithms such

as Shannon-Fano Coding, Huffman coding, Adaptive

Huffman coding, Run Length Encoding and Arithmetic

coding were considered in his research. Lempel Ziv scheme

which is a dictionary based technique was divided into two

families: those derived from LZ77 (LZ77, LZSS, LZH and

LZB) and those derived from LZ78 (LZ78, LZW and LZFG)

in his work. After a short period, in 2013, Doa'a Saad El-

Shora & Ehab Rushdy Mohamed works on the data

compression techniques: Huffman, Adaptive Huffman and

arithmetic, LZ77, LZW, LZSS, LZHUF, LZARI and PPM are

tested against different types of data with different sizes. In

2014, Kashfia Sailunaz, Mohammed Rokibul Alam Kotwal

worked on Shannon Fano Coding, Huffman Coding, Repeated

Huffman Coding and Run-Length coding. A new algorithm

"Modified Run-Length Coding" is also proposed and

compared with the other algorithms only on full text data. It

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

2

was a great contribution in the field of data compression.

After a while in 2017, Jayedul Haque and Nurul Huda worked

on Huffman, Run-Length, LZW, Shannon-Fano, Repeated-

Huffman, Run-Length-Huffman, and Huffman-Run-Length

[19] which were tested against not only text file but also

image file. This paper has extended their work using both

image and text data considering their future implementation.

3. METHOD OF DATA COMPRESSION

3.1 Recent Compression Method

3.1.1 Lempel-Ziv-Welch (LZW)
In the introduction chapter it has been discussed that what

lossless data compression is. One of the lossless data

compression widely used is LZW data compression, it is a

dictionary based algorithm. LZW compression is named after

its developers, A. Lempel and J. Ziv, with later modifications

by Terry A. Welch [1]. Lempel-Ziv-Welch (LZW) [1] this

algorithm proposed by Welch in 1984. LZW compression

works best for files containing lots of repetitive data. This is

often the case with text and monochrome images. LZW

compression is fast comparing to other algorithms. This

algorithm is an improved implementation of the LZ78

algorithm published by Lempel and Ziv in 1978 (LZ78) [2].

The first algorithm of Lempel and Ziv was published in 1977

and it is named as LZ77 [3]. LZ-77 is an example of what is

known as "substitutional coding". The LZ77 [3] and LZ78 [2]

are otherwise called LZ1 and LZ2 respectively like The LZW

algorithm uses dictionary and index for encoding and

decoding operation. It creates a dictionary and if a match is

found in the dictionary then corresponding string is replaced

by the index. LZW compression became the first widely used

universal data compression method on computers. After the

invention of LZW there are lots of improvements and

enhancement done in LZW for data compression that is

discussed in this section. LZW compression works best for

files containing lots of repetitive data especially for text and

monochrome images.

3.1.2 Run-Length
Run-Length Encoding is considered the easiest method of

compression techniques which can be used to compress data

made of any combination of symbols. It does not need to

know the frequency of repetition of symbols and can be very

efficient if data is represented as 0s and 1s [4].

The common technique behind this algorithm is to replace

consecutive reiterating occurrences of a symbol by one

occurrence of the symbol followed by the number of

occurrences.

3.1.3 Huffman
Huffman codes which are optimal with prefix codes generated

from a set of probabilities by a particular algorithm, the

Huffman Coding Algorithm. David Huffman developed the

algorithm as a student in a class on information theory at MIT

in 1950. The algorithm is now probably the most prevalently

used component of compression algorithms, used as the back

end of GZIP, JPEG and many other utilities.[5][6][7][8]

The basic understanding of Huffman coding is a technique

which deals with data compression of ASCII characters. It

follows top down procedure means the binary tree is built

from the top down to construct a minimal consequence. In

Huffman Coding the characters in a data file are converted to

binary code and the most common characters in the file have

the shortest binary codes, and the characters which are least

common have the longest binary code [9].

4. INTRODUCED METHODS

4.1 LZW-Huffman
Both the Huffman and LZW is an effective methods for data

compression techniques. LZW is better for text and

monochrome image where Huffman gives better result for all

the multimedia file. If Huffman coding technique can be

applied effectively on a file after LZW method, then it is

called LZW-Huffman coding. An algorithm which

compresses data using LZW encoding then it uses Huffman

encoding on resultant data.

Algorithm 1 illustrates how LZW-Huffman coding works.

Step 1: At the start, the dictionary and P is empty;

 Step 2: C = next character in the input-stream;

 Step 3: Is the string P+C present in the

dictionary?

 if

yes: P = P+C (extend P with C);

 if not:

 output the code word

which denotes P to the

output-stream;

 add the string P+C to

the dictionary;

 P = C (P now contains

only the character C);

 Step 4: Are there more characters in the input-

stream?

 if yes: go back to step 2;

 if not:

 output the code word which

denotes P to the output-stream;

 Step 5: Scan output stream

 Step 6: for (Read byte start to end)

 {

 Found-bytes [index] =read byte;

 Frequency [index] =count the

repetition of byte; //filling frequency table

 }

 Step 7: Build Sorted Frequency Table

 Step 8: Build Huffman Tree according to table

 Step 9: Traversal of tree to determine all code

words in bits

 Step 10: Make byte-list reading this bit-list

Step 11: Serialize byte-list in a file with extension

*.jna in browsing directory.

 Algorithm 1: LZW-Huffman Coding

4.2 Huffman-LZW
Both the Huffman and LZW is an effective methods for data

compression techniques. LZW is better for text and

monochrome image where Huffman gives better result for all

the multimedia file. If Huffman coding technique can be

applied effectively on a file then LZW method, then it is

called Huffman-LZW coding. An algorithm which

compresses data using Huffman encoding then it uses LZW

encoding on resultant data. .

Algorithm 2 illustrates how Huffman-LZW coding works.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

3

 Step 1: Scan input stream

 Step 2: for (Read byte start to end)

 {

 Found-bytes [index] =read byte;

 Frequency [index] =count the

repetition of byte; //filling frequency table

 }

 Step 3: Build Sorted Frequency Table

 Step 4: Build Huffman Tree according to table

 Step 5: Traversal of tree to determine all code

words in bits

 Step 6: Make byte-list reading this bit-list

Step 7: At the start, the dictionary and P is empty;

 Step 8: C = next character in the input-stream;

 Step 9: Is the string P+C present in the

dictionary?

 if

yes: P = P+C (extend P with C);

 if not:

 output the code word

which denotes P to the

output-stream;

 add the string P+C to

the dictionary;

 P = C (P now contains

only the character C);

 Step 10: Are there more characters in the input-

stream?

 if yes: go back to step 2;

 if not:

 output the code word which

denotes P to the output-stream;

Step 11: Make byte-list

Step 12: Serialize byte-list in a file with extension

*.jna in browsing directory.

 Algorithm 2: Huffman-LZW Coding

4.3 LZW-Run-Length
If LZW coding technique can be applied effectively on a file

before Run-length algorithm, then it is called LZW-Run-

length coding. An algorithm which compress data using LZW

encoding then it uses Run Length encoding on resultant data.

First it builds dictionary on scanned file after that it traverse

dictionary to make the code and detects repeating occurrences.

After that Run-Length is applied for the further procedure.

Algorithm 3 illustrates how LZW-Run-length coding works.

Step 1: At the start, the dictionary and P is empty;

 Step 2: C = next character in the input-stream;

 Step 3: Is the string P+C present in the

dictionary?

 if

yes: P = P+C (extend P with C);

 if not:

 output the code word

which denotes P to the

output-stream;

 add the string P+C to

the dictionary;

 P = C (P now contains

only the character C);

 Step 4: Are there more characters in the input-

stream?

 if yes: go back to step 2;

 if not:

 output the code word which

denotes P to the output-stream;

 Step 5: Make byte-list reading this output stream

 Step 6: Scan byte-list

 Step 7: Replace consecutive repeating

occurrences

 Step 8: Insert symbol with occurrence in binary

array

 Step 9: Form byte array from binary array

 Step 10: Serialize byte array in a file with

extension *.jts in browsing directory

 Algorithm 3: LZW-Run-length Coding

4.4 Run-Length-LZW
If Run-Length coding technique can be applied effectively on

a file before LZW algorithm, then it is called Run-length-

LZW coding. An algorithm which compress data using Run-

Length encoding then it uses LZW encoding on resultant data.

First it detects repeating occurrences on scanned file then

builds dictionary using this repeating occurrences after that it

traverse dictionary to make the code.

Algorithm 4 illustrates how Run-length-LZW coding works.

 Step 1: Scan file from browsing directory

 Step 2: Replace consecutive repeating

occurrences

 Step 3: Insert symbol with occurrence in byte list

 Step 4: Scan byte list as input stream

Step 5: At the start, the dictionary and P is empty;

 Step 6: C = next character in the input-stream;

 Step 7: Is the string P+C present in the

dictionary?

 if

yes: P = P+C (extend P with C);

 if not:

 output the code word

which denotes P to the

output-stream;

 add the string P+C to

the dictionary;

 P = C (P now contains

only the character C);

 Step 8: Are there more characters in the input-

stream?

 if yes: go back to step 2;

 if not:

 output the code word which

denotes P to the output-stream;

 Step 9: Make byte-list

Step 10: Serialize byte array in a file

with extension *.jna in browsing directory

 Algorithm 4: Run-length-LZW Coding

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

4

5. RESULT ANALYSIS
This paper will establish the effectiveness of LZW-Huffman

coding, Huffman-LZW, Run-length-LZW and LZW-Run-

Length algorithm. Text and image file has been used to test

those compression methods. We executed and tested our

methods on many standard and famous images such as "Lena

image" and other famous images. These standard test images

have been used by different researchers [16-20] related to

image compression and image applications. We have used

256×256 image file size. For assessing effectiveness of

methods compression ratio is used. In addition a fraction of

enwik8 text [21] is used in our work to evaluate the

compression techniques. As enwik8 is a large file so that to

avoid time complexity we have used a smaller part of this file

to analyze the result. Compression ratio is defined as

Compression ratio= 100

Original

CompressedOriginal

File containing Huffman tree has the format that is discussed

in [8] Repeated Huffman coding was first used with normal

coding of the tree and then memory efficient coding was used

to see whether repetition count increases. A Huffman tree

representation is also related to average code length for a

symbol in a message.

6. CAPTIONS/FIGURES
In this work all (previously mentioned in abstract) algorithms

have implemented using net-beans. Table 1 illustrate that all

data compression techniques achieve negative and positive

results against standard files. Positive results mean it lessen

the file size and negative results mean it increases the file size.

The experimental results of the implemented algorithms,

Huffman, Run-Length, LZW coding as well as proposed

methods LZW-Huffman, Run-Length-LZW, Huffman-LZW

and LZW-Run-Length for compression ratio are described in

Table 1.

Table 1. Compression ratio for images and text data in compression methods

File

Original

Size(Byt

es)

Compression Ratio (%)

Run-

length

Huffma

n
LZW

LZW-

Huffman

Huffman-

LZW

LZW-Run-

length

Run-length

-LZW

lena.jpg 8,246 -44.3 0.74 0.9 7.8 -2.5 -34 0.98

F16.jpg 8,628 -32.2 0.54 0.7 8.2 1.6 -72 -1.8

babbon.jpg 11,655 -45.3 1 -0.98 11.2 3.5 -89 1.6

boat.jpg 20,561 -48.7 1 0.6 9.6 -13.1 -158 -23

Peppers.jpg 8,690 -34.1 0.44 1.3 6.9 11.4 -289 1.7

Enwik8.txt 16,47,84

2

-0.9 37.1 44.5 53 39.2 28 1.4

The apparent of Huffman is its compression ratio is always

positive for all sample file. On the other hand, LZW

methodology also gives positive ratio except one. From these

table we can see that Huffman is giving better result for image

file. On the other hand, LZW method is better for text data.

Again we can see Run-Length method is not efficient for both

image and text document as it gives negative result for all the

sample file.

The compression ratio of LZW-Huffman and Huffman-LZW

are better than other two proposed technique comparatively.

But only LZW-Huffman gives some positive results for

standard image file and text file.

Fig 1: Results for Run-Length

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

5

Fig 2: Results for Huffman

Fig 3: Results for LZW

Fig 4: Results for LZW-Huffman

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

6

Fig 5: Results for Huffman-LZW

Fig 6: Results for LZW-Run-Length

Fig 7: Results for Run-Length-LZW

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 7, October 2017 – www.caeaccess.org

7

There are seven figures given above based on all of our

methods which are used to compress benchmark files as we

have mentioned in result analysis chapter. These figures

represents the effectiveness of each method which was

experienced by the benchmark files. If we look into the fig 1-

fig 4, fig 1 have opposite eminence regarding rest. Run-length

have negative compression ratio on the other hand Huffman,

LZW and LZW-Huffman have positive ratio for all the

benchmark file except LZW for babbon.jpg. And the other

three proposed methods have mishmash of ratio that means

some method have positive ratio and some have negative for

the respective benchmark files. Eventually text file is

positively compressed by all of the methods except runlegth.

7. CONCLUSION
Data compression is a way that decreases the data size,

removing the obsessive information and redundancy which

consequently reduces the storage space, cost & increases the

data transfer rate in communication. In this paper recent

methods are associated in a single method. The identical

features of these algorithms are transformation and

compression algorithms; where the transformation rearranged

the data to optimize input for the next sequence of

compression algorithm. Those proposed methods are

experimented with different benchmark files and formats such

as images and text files which represents some prospective

results with few drawbacks in proposed methods. The

comparison of Experiment results with the recent methods and

proposed algorithms hits the expected better compression

ratio (%) for “LZW-Huffman”, which gives better result even

from Huffman for text data as well as image. On the other

hand LZW-Run-Length gives a better result in comparison

with other proposed method for only text data. But Huffman

gives better result for all the image and text files which can be

seen in table given in figures and tables section. The main

drawback experienced in this paper is the compression ratio

(%) of “LZW- Run-length” algorithm, which only manages a

Compression ratio (%) in negative magnitude for image file.

Eventually, it remains space for the future research and

development on several fields which can be carried on like

Repeated LZW, Repeated Run-Length and Repeated

Huffman-LZW compression techniques. Besides,

compression coding video and audio data and efficient

decoding technique for all the proposed methods will be

carried on in future works.

8. ACKNOWLEDGMENTS
Our gladness to Almighty and my supervisor for his relentless

conduct, encouragement, and endurance, and for giving me

the opportunity to do this work.

Eventually, my profound gratefulness and predilection to my

parents for their buttress, encouragement, and incessant love.

9. REFERENCES
[1] WELCH, T. A. 1984.” A technique for high-performance

data compression”. IEEE Comput. 17, 6, 8–19. 9.

[2] ZIV, J. AND LEMPEL, A. 1978. “Compression of

individual sequences via variable-rate coding”. IEEE

Trans. Inform. Theory 24, 5, 530–536.

[3] ZIV, J. AND LEMPEL, A. 1977. A “universal algorithm

for sequential data compression”. IEEE Trans. Inform.

Theory 23, 3, 337–343.

[4] Campos, A. S. E. Run Length Encoding. Available:

http://www.arturocampos.com/ac_rle.html (last accessed

July 2012).

[5] Connel, J. B., “A Huffman-Shannon-Fano Code”, Proc.

IEEE 61 (Jul. 1973), 1046-1047.

[6] Gallager, R. G., “Variations on a theme by Huffman”,

IEEE Trans. Inf. Theory IT-24, 6(Nov. 1978), 668-674.

[7] Hashemian, R., “Memory efficient and high-speed

search Huffman coding”, IEEE Trans. Comm.

43(10)(1995)2576-2581.

[8] M. N. Huda, "Study on Huffman Coding," Graduate

Thesis, 2004.

[9] S. Porwal, Y. Chaudhary, J. Joshi and M. Jain , “ Data

Compression Methodologies for Lossless Data and

Comparison between Algorithms” International Journal

of Engineering Science and Innovative Technology

(IJESIT) Volume 2, Issue 2, March 2013.

[10] Huffman, D. A. : ‘A Method for the Construction of

Minimum Redundancy Codes", Proc. IRE, Vol. 40, No.

9, pp. 1098-1101, September 1952.

[11] Buro. M.: ‘On the maximum length of Huffman codes’,

Information Processing Letters, Vol. 45, No.5, pp. 219-

223, April 1993.

[12] Chen, H. C. and Wang, Y. L. and Lan, Y. F.: ‘A Memory

Efficient and Fast Huffman Decoding

Algorithm’Information Processing Letters, Vol. 69, No.

3, pp. 119- 122, February 1999.

[13] Mashhur Sattorov, Heau-Jo Kang. :’ Huffman Coding

Approach to Performance of 16-QAM/OFDM’.

[14] Wong, S. and Cotofana, D. and Vassiliadis, S.: General-

Purpose Processor Huffman Encoding Extension,

Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC

2000), pp. 158-163, Las Vegas, Nevada, March 2000.

[15] S. Shanmugasundaram and R. Lourdusamy, “A

Comparative Study of Text Compression Algorithms”

International Journal of Wisdom Based Computing, Vol.

1 (3), December 2011.

[16] Kao, Ch., H, and Hwang, R. J.: 'Information Hiding in

Lossy Compression Gray Scale Image', Tamkang Journal

of Science and Engineering, Vol. 8, No 2, 2005, pp. 99-

108.

[17] Ueno, H., and Morikawa, Y.: 'A New Distribution

Modeling for Lossless Image Coding Using MMAE

Predictors'. The 6th International Conference on

Information Technology and Applications, 2009.

[18] Grgic, S., Mrak, M., and Grgic, M.: 'Comparison of

JPEG Image Coders'. University of Zagreb, Faculty of

Electrical Engineering and Computing Unska 3 / XII,

HR-10000 Zagreb, Croatia.

[19] Md Jayedul Haque and Mohammad Nurul Huda. Study

on Data Compression Technique. International Journal

of Computer Applications 159(5):6-13, February 2017.

[20] http://sipi.usc.edu, accessed Mar 2011.

[21] Fano R.M., “The Transmission of Information”,

Technical Report No. 65, Research Laboratory of

Electronics, M.I.T., Cambridge, Mass.; 1949.

