Perfect Line Domination in Graphs

N. Pratap Babu Rao
Associate Professor
S.G. College Koppal 583231
Karnataka, India

ABSTRACT
Here we are defining perfect line domination set and some results on perfect line domination.

Keywords
Line domination, perfect line domination, neighborhood, minimal line domination

1. INTRODUCTION
Definition 1.1: Perfect line dominating set:
A subset S of $E(G)$ is said to be perfect line dominating set if for each edge not in S, e is adjacent to exactly one edge of S.

Consider the path P_3 with 4 vertices and edge are $\{ e_1, e_2, e_3 \}$. The set $\{ e_2 \}$ is perfect line dominating set in this graph.

It may be noted that If G is a graph then $E(G)$ is always a perfect line dominating set.

Definition 1.2: Minimal perfect line dominating set:
A perfect line dominating set S of the graph G is said to be minimal perfect line dominating set if each line e in S, $S-\{ e \}$ is not a perfect line dominating set.

It may be noted that it is not necessary that a proper subset of minimal perfect line dominating set is not a perfect line dominating set.

Example 1.3: Consider the cycle graph $G = C_3$ with 5 vertices. Then obviously $E(G)$ is a minimal perfect line dominating set of G.

However the set $\{ e_1, e_2 \}$ is proper subset of $E(G)$ and is a perfect line dominating set in the graph G.

Definition 1.4: Minimum perfect line dominating set:
A perfect line dominating set S with smallest cardinality is called set of the graph minimum perfect line dominating set it is called $\gamma_{pf}(G)$.

Definition 1.5: Perfect line domination number:
The cardinality of a minimum perfect line dominating set is called the perfect domination number of the graph G. It is denoted by $\gamma_{pf}(G)$.

The perfect line domination number of cycle C_6 is 2. C_3 is 2 and that of path P_4 is 1.

Definition 1.6: perfect private line neighborhood:
Let S be the subset of $E(G)$ and $e \in S$ then the perfect private neighborhood of e with respect to $S = P_{pf}[e, S] = \{ x \in E(G)-S : N(x) \cap \{ e \} \cup \{ e \} \text{ if } e \text{ is adjacent to no line of } S \text{ or at least line of } S \}.$

Theorem 1.7: a perfect line dominating set S of G is minimal perfect line dominating set if and only if for each line e in S $P_{pf}[e, S]$ is nonempty.

Suppose S is minimal and $e \in S$. Therefore there is a line x not in S \{ e \} or x is adjacent to at least two lines of $S - \{ e \}$.

If $x = e$ then this implies that $e \in P_{pf}[e, S]$.

If $x \neq e$ then it is impossible that x is adjacent to at least two lines of $S - \{ e \}$. Therefore S is a perfect line dominating set.

Conversely, suppose $e \in S$ and $P_{pf}[e, S]$ contains some line x of G.

If $x = e$ then x is adjacent to at least two lines of $S - \{ e \}$.

If $x \neq e$ then $N(x) \cap S = \{} e \}$ implies that x is not adjacent to any line of $S - \{ e \}$.

Thus in all cases $S - \{ e \}$ is not a perfect line dominating set, if $e \in S$. Thus S is minimal.

Example 1.8: Consider the path $G = P_3$ with five lines e_1, e_2, e_3, e_4, e_5. Note that $S = \{ e_2, e_4 \}$ is minimum and therefore minimal perfect line dominating set $P_{pf}[e_2, S] = \{ e_1, e_2 \}$.

We define the following symbols,

$E^+_{pf} = \{ e \in E(G) : \gamma_{pf}(G) \leq \gamma_{pf}(G-e) \}$

$E^-_{pf} = \{ e \in E(G) : \gamma_{pf}(G) > \gamma_{pf}(G-e) \}$

$E^0_{pf} = \{ e \in E(G) : \gamma_{pf}(G) = \gamma_{pf}(G-e) \}$

Remark: The above sets are mutually disjoint and their union is $E(G)$.

Lemma 1.9: Let $e \in E(G)$ and suppose e is a pendant line and has a neighbor x if $e \in E^-_{pf}$ then

$\gamma_{pf}(G-e) = \gamma_{pf}(G) - 1$.

Let S_1 be a minimum line dominating set of G.

$E - \{ e \}$ if $x \in S_1$ then S_1 is a perfect line dominating set of G with $|S_1| < \gamma_{pf}(G)$.

i.e., $\gamma_{pf}(G) = |S_1| \leq \gamma_{pf}(G-e)$ this is a contradiction, therefore $\gamma_{pf}(G) = |S_1| = |S_1| + 1 = \gamma_{pf}(G-e) + 1$.

Hence the lemma.

Theorem 1.10: Let e be a line of G Then $e \in E^+_{pf}$ if and only if the following conditions are satisfied, i) e belongs to every γ_{pf} set of G, ii) no subset s of $G - \{ e \}$ which is either disjoint from $N[e]$ or intersects $N[e]$ in at least two lines and $|S| \leq \gamma_{pf}$ can be perfectly dominating set of

8
G – {e}.

Proof: (i) Suppose e ∈ E_{pf}^+.

Suppose S is a \(\gamma_{pf} \) set of G which does not contains e then S is a perfect dominating set of G – {e}.

Therefore \(\gamma_{pf} (G – e) \leq |S| = \gamma_{pf} (G) \), thus e ∉ E_{pf}^+. This is a contradiction. Then e must belong to every \(\gamma_{pf} \) set of G.

(ii) If there is set S which satisfies the condition stated in (ii) then S is a perfect line dominating set of G – {e} and therefore \(\gamma_{pf} (G – e) \leq \gamma_{pf} (G) \) This is a contradiction.

Conversely, assume that (i) and (ii) hold

Suppose e ∈ E_{pf}^0. Let s be a minimum perfect line dominating set of G – {e}.

Then |S| = \(\gamma_{pf} (G) \).

Suppose e is not adjacent to any line of S. Then S is disjoint from N[e]. |S| = \(\gamma_{pf} (G) \). and S is perfectly line dominating set of G – {e}. This violates (ii)

Suppose e is adjacent to exactly one line of S then S is minimum perfect line dominating set of G not containing e which violates (i)

Suppose e is adjacent to at least two lines of S, then |S| ∩ N[e] in at least two lines and S is perfectly line dominating set of G – {e} with |S| = \(\gamma_{pf} (G) \) which again violates (ii).

Thus e ∈ E_{pf}^0 implies (i) and (ii) violated.

2. ACKNOWLEDGEMENTS

We would like to express our thanks the referee, for their careful reading and valuable suggestions.

3. REFERENCES

