

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 Foundation of Computer Science FCS, New York, USA Volume 7 – No. 9, November 2017 – www.caeaccess.org

Perfect Line Domination in Graphs

N. Pratap Babu Rao Associate Professor S.G. College Koppal 583231 Karnataka, India

ABSTRACT

Here we are defining perfect line domination set and some results on perfect line domination.

Keywords

Line domination, perfect line domination, neighborhood, minimal line domination

1. INTRODUCTION

Definition 1.1: Perfect line dominating set:

A subset S of E(G) is said to be perfect line dominating set if for each edge not in S, e is adjacent to exactly one edge of S.

Consider the path P_4 with 4 vertices and edge are $\{e_1, e_2, e_3\}$. The set $\{e_2\}$ is perfect line dominating set in this graph.

It may be noted that If G is a graph then E(G) is always a perfect line dominating set.

Definition 1.2: Minimal perfect line dominating set:

A perfect line dominating set S of the graph G is said to be minimal perfect line dominating set if each line e in S, S-{e} is not a perfect line dominating set.

It may be noted that it is not necessary that a proper subset of minimal perfect line dominating set is not a perfect line dominating set

Example 1. 3. Consider the cycle graph $G = C_5$ with 5 vertices. Then obviously E(G) is a minimal perfect line dominating set of G.

However the set { e_1, e_2 } is proper subset of E(G) and is a perfect line dominating set in the graph G.

Definition 1.4: Minimum perfect line dominating set:

A perfect line dominating set with smallest cardinality is called set of the graph minimum perfect line dominating set it is called $\dot{\gamma_{pf}}$

Definition1.5: Perfect line domination number:

The cardinality of a minimum perfect line dominating set is called the perfect domination number of the graph G. it is denoted by $\gamma_{pf}(G)$.

The perfect line domination number of cycle C_6 is 2, C_5 is 2 and that of path P_4 is 1.

Definition 1.6: perfect private line neighborhood:

Let S be the subset of E (G) and $e\epsilon$ S then the perfect private neighborhood of e with respect to $S = P_{pf}$ [e, S] = { $x \in E(G)$ -S; N(x) \cap { e } } U { e, if e is adjacent to no line of S or at least line of S.

Theorem 1.7: a perfect line dominating set S of G is minimal perfect line dominating set if and only if for each line e in S P_{pf} [e, S] is nonempty.

Suppose S is minimal and $e \in S$. Therefore there is a line x not in S- {e} or x is adjacent to at least two lines of S -{e}.

If x=e then this implies that $e \in P_{pf}[e, S]$

If $x \neq e$ then it is impossible that x is adjacent to at least two lines of S – {e}. because S is a perfect line dominating set. Therefore x is not adjacent to any line of S – {e}. Since S is a perfect dominating set x is adjacent to only e in S. That is N(x) \cap S ={ e } then x $\in P_{pf}$ [e, S].

Conversely, suppose $e \epsilon S$ and P_{pf} [e, S] contains some line x of G.

If x=e then x is either adjacent to at least two lines of S –{ e} Then S –{ e} is not perfect line dominating set

If $e \neq e$ then $N(x) \cap S = \{e\}$ implies that x is not adjacent to any line of $S - \{e\}$.

Thus in all cases $S - \{e\}$ is not a perfect line dominating set, if $e \in S$. Thus S is minimal.

Example 1.8. Consider the path $G = P_5$ with five lines $e_1, e_2, e_3, e_4 e_5$. Note that $S = \{e_2, e_4\}$ is minimum and therefore minimal perfect line dominating set $P_{pf} \{e_2, S\} = \{e_1, e_2\}$

We define the following symbols,

 $E^{+}_{pf} = \{ e \in E(G) ; \gamma^{'}_{pf} (G) \le \gamma^{'}_{pf} (G-e) \}$

 $E_{pf}^{-} = \{ e \in E(G) ; \gamma_{pf}^{'}(G) > \gamma_{pf}^{'}(G-e) \}$

$$E^{0}_{pf} = \{ e \in E(G) ; \gamma'_{pf}(G) = \gamma'_{pf}(G-e) \}$$

Remark; The above sets are mutually disjoint and their union is E(G)

Lemma; **1.9.** Let $e \in E(G)$ and suppose e is a pendent line and has a neighbor x if $e \in E_{pf}$ then

 $\dot{\gamma_{pf}}(G-e) = \dot{\gamma_{pf}}(G) - 1.$

Let S₁ be a minimum line dominating set of

E – { e} if x \in S₁ then S₁ is a perfect line dominating set of G with | S₁ | < γ_{pf} (G)

i.e., $\gamma_{pf}(G) \le |S_1| \le \gamma_{pf}(G-e)$ this is a contradiction, therefore $x \notin S_1$ let $S = S_1 \cup \{x\}$. Then S is minimum perfect line dominating set of G. Therefore $\gamma_{pf}(G) = |S| = |S_1| + 1 = \gamma_{pf}(G-e) + 1$

Hence the lemma.

Theorem 1.10. Let e e a line of G Then $e \in E_{pf}^+$ if and only if the following conditions are satisfies, i) e belongs to every γ_{pf}^- set of G, (ii) no subset s of G – { e] which is either disjoint from N[e] or intersects N[e] in at least two linesand $|S| \le \gamma_{pf}^-$ can be perfectly dominating set of

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 Foundation of Computer Science FCS, New York, USA Volume 7 – No. 9, November 2017 – www.caeaccess.org

 $G - \{e\}.$

Proof: (i) Suppose $e \in E_{pf}^+$,

Suppose S is a γ_{pf} set of G which does not contains e then S is a perfect dominating set of

 $G - \{e\}.$

Therefore $\gamma_{pf}^{'}(G-e) \leq |S| = \gamma_{pf}^{'}(G)$. thus $e \notin E_{pf}^{+}$. This is a contradiction. Then e must belong to every $\gamma_{pf}^{'}$ set of G,

(ii) If there is set S which satisfies the condition stated in (ii) then S is a perfect line dominating set of G – {e] and therefore γ'_{pf} (G-e) $\leq \gamma'_{pf}$ (G) This is a contradiction.

Conversely, assume that (i) and (ii) hold

Suppose $e \in E^0_{pf}$. Let s be a minimum perfect line dominating set of $G - \{e\}$.

Then $|S| = \gamma'_{pf}(G)$.

Suppose e is not adjacent to any line of S. Then S is disjoin from N[e]. $|S| = \gamma'_{pf}$ (G). and S is perfectly line dominating set of G – {e}. This violates (ii)

Suppose e is adjacent to exactly one line of S then S is minimum perfect line dominating set of G not containing e which violates (i)

Suppose e is adjacent to at least two lines of S, then $|S| \cap N[e]$ in at least two lines and S is perfectly line dominating set of G $- \{e\}$ with $|S| = \gamma_{pf}(G)$ which again violates (ii).

Thus $e \in E_{pf}^{0}$ implies (i) and (ii) violated.

2. ACKNOWLEDGEMENTS

We would like to express our thanks the referee, for their careful reading and valuable suggestions

3. REFERENCES

- Acharya BD 1980 "The strong domination number of graph and related concepts. J.maths.phy.Sci vol14 no.5 pp471-475.
- [2] Berge C 1973 Graphs and Hyper graphs, North-Holland Amsterdam.
- [3] Jayaram S.R. Line domination in graphs-Line domination in graphs, graphs and combinotorics vol3 Dec1987 pp357-363
- [4] Muthulakshmi.T 2014 'Theory-Domination related parameters in graph PhD thesis Anna University Chennai.
- [5] Nordhus E.A and Gaddum J.W 1956 'On Complimentary graphs Amer. Math. Monthly vol63 pp175-177.