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1. INTRODUCTION 

Definition  1. 1 : Perfect line dominating set: 

A subset S of E(G) is said to be perfect line dominating set if 

for each edge not in S, e is adjacent to exactly one edge of S. 

Consider the path P4 with 4 vertices and edge are {   e1,   e2,    e3 

}. The set {  e2 } is perfect line dominating set in this graph. 

It may be noted that If G is a graph then E(G) is always a 

perfect line dominating set. 

Definition 1.2: Minimal perfect line dominating set: 

A perfect line   dominating set S of the graph G is said to be 

minimal perfect line dominating set if each line  e in S, S-{e} 

is not a perfect line dominating set. 

It may be noted that it is not necessary that a proper subset of 

minimal perfect line dominating set is not a perfect line 

dominating set 

Example 1. 3. Consider the cycle graph G =C5 with 5 

vertices. Then obviously E(G) is a minimal perfect line 

dominating set of G. 

However the set { e1, e2 } is proper subset of E(G) and is a 

perfect line dominating set in the graph G. 

Definition 1.4:  Minimum perfect line dominating set: 

A perfect line dominating set with smallest cardinality is 

called set of the graph minimum perfect line dominating set it 

is called  ’
pf 

Definition1.5: Perfect line domination number: 

The cardinality of a minimum perfect line dominating set is 

called the perfect domination number of the graph G. it is 

denoted by    ’
pf (G). 

The perfect line domination number of cycle C6 is 2,   C5 is 2 

and that of path P4 is 1. 

Definition  1.6: perfect private line neighborhood: 

Let S be the subset of E (G) and e  S then the perfect private 

neighborhood of e with  respect to S = Ppf [e, S] =   { x   

E(G)-S ; N(x)   { e } }   { e, if e is adjacent to no line of S or 

at least line of S. 

Theorem 1.7:  a perfect line dominating set S of G is minimal 

perfect line dominating set if and only if for each line e in S 

Ppf [e, S] is nonempty. 

Suppose   S   is minimal and e  S  . Therefore there is a line x 

not in S- {e} or x is adjacent to at least two lines of S –{e}. 

If x=e then this implies that e  Ppf [e, S] 

If x  e then it is impossible that x is adjacent to at least two 

lines of S – {e}. because S is a perfect line dominating set. 

Therefore x is not adjacent to any line of S – {e}. Since S is a 

perfect dominating set x is adjacent to only e in S. That is 

N(x) S ={ e } then  x   Ppf [e, S]. 

Conversely, suppose   e  S and Ppf [e, S] contains some line x 

of G. 

If x=e then x is either adjacent to at least two lines of S –{ e} 

Then S –{ e} is not perfect line dominating set 

If e e then N(x)  S = { e ] implies that x is not adjacent to 

any line of  S –{ e}. 

Thus in all cases S – { e} is not a perfect line dominating set, 

if e  S. Thus S is minimal. 

Example  1.8. Consider the path G= P5 with five lines e1, e2, 

e3, e4 e5. Note that S ={ e2, e4} is minimum and therefore 

minimal perfect line dominating set  Ppf {e2, S} = {e1, e2}  

We define   the following symbols, 

E+
pf= { e   E(G) ;  ’

pf ( G)     ’
pf ( G-e)} 

E-
pf ={ e   E(G) ;  ’

pf ( G)    ’
pf ( G-e)} 

E0
pf  = { e   E(G) ;  ’

pf ( G)    ’
pf ( G-e)} 

Remark; The above sets are mutually disjoint and their union 

is E(G) 

Lemma; 1. 9. Let   e   E(G) and suppose e is a pendent line 

and has a neighbor x if  e   E-
pf  then  

       ’
pf ( G-e) =   ’

pf ( G) – 1. 

Let S1 be a minimum line dominating set of 

E – { e} if x  S1 then S1 is a perfect line dominating set of G 

with | S1 |     ’
pf ( G)   

 i.e.,   ’
pf ( G)    | S1 |     ’

pf ( G-e) this is a contradiction, 

therefore   x  S1 let S = S1   { x }. Then S is minimum 

perfect line dominating set of G. Therefore    ’
pf ( G) = | S | = 

|S1 | + 1 =  ’
pf ( G – e) + 1 

Hence the lemma. 

Theorem 1.10. Let e e a line of G Then  e    E+
pf  if and only 

if the following conditions are satisfies, i) e belongs to  every 

 ’
pf  set of G, (ii) no subset s of G – { e ] which is either 

disjoint from N[e] or intersects N[e] in at least two linesand  

|S|    ’
pf   can be perfectly dominating set of 
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  G – {e}. 

Proof: (i) Suppose   e    E+
pf,  

Suppose S is a   ’
pf set of G which does not contains  e then S 

is a perfect dominating set of 

 G – {e}. 

Therefore    ’
pf ( G-e)    |S| =  ’

pf ( G). thus  e    E+
pf,. This is 

a contradiction.  Then e must belong to every    ’
pf   set of G, 

(ii) If there is set S which satisfies the condition stated in (ii) 

then S is a perfect line dominating set of G – {e] and therefore  

 ’
pf ( G-e)    ’

pf ( G) This is a contradiction. 

Conversely, assume that (i) and (ii) hold 

Suppose   e     E0
pf .  Let s be a minimum perfect line 

dominating set of G –  { e }. 

Then |S| =  ’
pf (G). 

Suppose e is not adjacent to any line of S. Then S is disjoin 

from N[e].  |S| =  ’
pf  ( G) .  and S is perfectly line dominating 

set of G – {e}. This violates (ii) 

Suppose e is adjacent to exactly one line of S then S is 

minimum perfect line dominating set of G not containing e 

which violates (i) 

Suppose e is adjacent to at least two lines of S, then |S|   N[e] 

in at least two lines and S is perfectly line dominating set of G 

– {e]  with    |S| =  ’
pf ( G) which again violates (ii). 

Thus   e     E0
pf implies (i) and (ii) violated. 
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