

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

19

 ……. ……. ……. ………

a.txt 100

Directory

……

……

FAT

… …. … …

105 120 FF

100 105 120

F2 F3 F1

Data Clusters

FAT

F1: 1
st

 Fragment of a.txt
F2: 2

nd
Fragment of a.txt

F3: 3
rd

 Fragment of a.txt

100 105 120

Unconventional Method of Accessing Files – An

Automated Generation of its Input

K. Srinivas
Research Scholar in CSE

JNTUH University, Kukatpalli,
Hyderabad, Telangana, India

T. Venugopal, PhD
Professor, Department of CSE
JNTUH College of Engineering,
Jagtial Dist. Telangana, India

ABSTRACT

File Carving is an unconventional method of accessing files

from disk. It is a technique of reassembling unordered mixed

file fragments, without using files’ metadata such as FAT, for

reconstructing the actual files present on the disk. In the areas

of data recovery and digital forensics this situation arises. A

challenge file is an input file for testing a file carving tool

during its development phase and it consists of a number of

files, in the form of fragments, mixed in random order [1]. In

this paper authors have presented a software system that

generates a challenge file by implementing, at user level, a file

system which broadly follows FAT file system. This software

system uses a large size file to store file fragments just like a

kernel level file system uses disk to store files. The designers

of file carvers can use the challenge file conveniently as a

virtual disk, in place of the actual disk, thus eliminating the

need of a physical hard disk for testing their algorithms. The

kernel level file system fragments the file, as per availability

of free clusters, at the time of creation or modification of files.

The user level file system, fragments the file, as per

availability of free clusters, on the virtual disk i.e., the

challenge file. This challenge file consists of mixed file

fragments of a number of user files. There are a number of

other benefits of this approach as outlined in this paper.

General Terms

File Carving, Digital Forensics, Data Recovery, File System,

Disk Clusters, Operating Systems.

Keywords

User Level File System, Kernel Level File System, Virtual

disk, Challenge file, Script File.

1. INTRODUCTION
When a user saves a file on a disk, the Operating System uses

its File System component to handle it. A File System is a set

of software modules, at kernel level, for file handling

operations. Assume that a user has created a file named as

“one.txt” containing the text “abc”. The size of this file is 3

bytes. The file system allocates one free clusters for this new

file, at the time of its creation, from the pool of free clusters

that it maintains. A cluster is a set of consecutive sectors on

the disk. A cluster is an allocation unit. The kernel file

system views the disk as a set of clusters than as a set of

bytes. When a user creates a new file, the required number of

free clusters is allocated for it. And when a user deletes a file,

all the used clusters by the file are freed. So, for the above

“one.txt” file, one cluster is allocated. Thus when the

properties of the file “one.txt” are viewed on Windows 7

Operating System, we notice file size as 3 bytes and size on

the disk as 4096 bytes. In this paper we assume the cluster

size as 4096 because it is the most common size but it can

vary [2].

Figure 1. The three regions of a Hard Disk namely

directory, FAT and data clusters, used by Operating

System in Conventional Method of Accessing a

Fragmented File

Consider a file named “a.txt” of size 10KB on the disk saved

at cluster numbers 100, 105 and 120. In conventional method,

to perform read operation on this file, the file system obtains

these cluster numbers (that were saved in the file system’s

data structures when the file was created, as shown in Figure

1), reads data from these clusters and presents the data to user

application [4]. It is up to user application how to interpret

this data.

When the file is deleted, the File System changes the first byte

of the file name of a.txt to ‘_’. Then it stores a zero in each of

the FAT locations at indexes 100, 105 and 120 to indicate that

the clusters 100, 105 and 120 are free now. The actual data of

a file a.txt is not erased [4]. In an unconventional method of

accessing files, file fragments are to be reassembled in the

absence of metadata in file system data structures as shown in

Figure 2. Unconventional methods are applied under three

different situations. A) When files were deleted accidentally

and they need to be recovered. B) When file(s) were deleted

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

20

_.txt 100

Directory

……

……

FAT

… …. … …

0 0 0

 ……. ……. ……. ………

100 105 120

F2 F3 F1

Data Clusters

FAT

F1: 1
st

 Fragment of a.txt
F2: 2

nd
Fragment of a.txt

F3: 3
rd

 Fragment of a.txt

100 105 120

by a criminal intentionally to escape from the law for his

criminal activities and investigating agencies want to view

such files [3]. C) When file system data structures such as

DIR and FAT got corrupted and the files present on the disk

to be read. Under these three conditions the conventional

method cannot be used.

Figure 2. The three regions of a Hard Disk namely

directory, FAT and data clusters, after deleting the a.txt

File. Operating System cannot access the file now.

Unconventional Method of Accessing the Fragmented

File a.txt is needed, if it is forensically important

To face the above situations technically in the areas of data

recovery and digital forensics, a new technology known as file

carving has evolved. File carving is a technique of

identifying, reassembling mixed file fragments, in the absence

of files’ metadata, to reconstruct the actual files present on the

disk [4].

In a conventional method of reading a file, the file system

refers to file-system’s data structures, reads the data present in

clusters and then presents it to the application at user level.

The conventional methods are not useful for accessing the

files present on the disk in situations described in the above

paragraphs. File carving is an unconventional method of

accessing files from the disk when the files’ metadata is not

available.

A file carving algorithm, during its development phase, needs

to test a used disk partition of small size to verify the

correctness of the developed algorithm. As a replacement for

the test disk, in recent research, a large file containing mixed

file fragments but not containing the metadata is used to

verify the correctness of the developed file carving algorithms

[1].

When a used disk partition is considered, it contains naturally

file fragments because the file system always cannot allocate

clusters in contiguous area on the disk for a file [5]. The same

state is created artificially on a large file and is used as an

alternative to a test disk [1, 7]. This large file therefore

contains unordered mixed file fragments of a number of files

without any metadata of files. It is a challenge for a file

carving algorithm to join these pieces for reconstructing the

actual files present in it and present to the user applications.

Therefore, a large file containing unordered, mixed file

fragments of a number of files without any files’ metadata is

called a challenge file. A tool for an automated generation of

a challenge file that is as natural as a used disk partition is

required to provide realistic data sets that are as complex as

the data on real used disks [6]. In this paper, authors present a

software system that implements an automated construction of

a challenge file that is as natural as a used disk partition.

The presentation of our work is planned, in this paper, as

follows. In section II, a structure of a challenge file is

described. In section III, the principles adopted for an

automated creation of a challenge file are described. In

section IV, design and implementation of software system is

presented. In section V, results of our experiments are

presented. Finally in section VI, the number of benefits of

this approach is described.

2. STRUCTURE OF A CHALLENGE

FILE
The automated construction of a natural challenge file consists

of the THREE phases. 1) The initial phases 2) Construction

phase 3) Fine-tuning phase. In this section, the structure of a

challenge file during each of the above phases is described.

2.1 Structure of a Challenge File in Initial

Phase
In an initial phase, the challenge file is viewed as consisting of

contiguous-clusters with each cluster containing all zeros in

its System Area i.e. directory and FAT regions. A cluster is a

set of 4096 contiguous bytes starting at a byte offset

satisfying the equation (1). The above state of a challenge file

is equivalent to a disk containing no files on it and files

system data structures in resonance with the same. The

structure of a challenge file thus is as shown in Figure 3.

Figure 3. The Structure of a Challenge File in an Initial

Phase

We note that every file fragment of a user file in a Challenge-

file should start at a byte offset satisfying Equation (1). The

reason is that, on a disk, every fragment of a file starts at a

byte offset satisfying the Equation (1).

 (1)

On a disk, let the space occupied by a file of size (FS) be FDS

which is always equals to multiple of cluster size (CS) as

given in Equation (2) even though the actual size is not

multiple of cluster size (CS). In Equation (2), % represents

mod operation, division operation returns quotient i.e. an

integer and ? represents ‘if’ condition as in C source language.

 GARBAGE DATA 0s 0s

Dir FAT Data Clusters

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

21

 (2)

2.2 Structure of Challenge File in

Construction Phase
During the construction phase, the challenge file consists of

three regions as shown in Figure 4. The three regions are; A)

DIR B) FAT C) Data-Clusters as described in section I. The

state of a challenge file is equivalent to a disk containing

many files of which three files File-A, File-B and File-C such

that the File-A and File-B (fragmented files) and File-C (the

contiguous file) requiring 4 clusters, 3 clusters and 2 clusters

respectively.

Figure 4. The Structure of a Challenge File in

Construction Phase

The three files together require 9 clusters. Therefore nine

corresponding locations of FAT store non-zero values. All

FAT locations corresponding to free clusters store zeroes.

The three entries in DIR are allocated one for each of the three

files File-A, File-B and File-C. The total number of allocated

entries in the DIR region is equal to the number of files

created on the disk.

2.3 Structure of a Challenge File after

Fine-Tuning Phase
The structure of a challenge file after the fine-tuning phase is

shown in Figure 5. It is equivalent to a ‘used disk’ containing

data of files created during the construction phase but not

containing metadata of all the files created during the

construction phase. Therefore, in Figure 5 data of File-A,

File-B and File-C is present but does not contain their

metadata.

Figure 5. The structure of a Challenge File after Fine

Tuning Phase

The above challenge file is a challenge for a file carving

algorithm., During its development phase, coding of File

carving algorithm can be verified about its correctness in

joining pieces for retrieving File-A, File-B, File-C and others.

Submitting a challenge-file to a file-carver developer is

equivalent to submitting a disk to a digital forensic expert or a

data recovery expert. The challenge file acts as a used disk

for file carving algorithms and therefore we use virtual disk as

a synonym for the term challenge file.

3. THE TECHNIQUE OF CONSTRUC-

TION OF A CHALLENGE FILE
The technique of construction of a challenge file (i.e., virtual

disk) in each of the three phases is presented below.

3.1 The Technique of Construction in

Initial Phase
A virtual disk (i.e. a challenge-file) of user-specified size S

GB is created in binary mode and initialized to contain all

zeroes in System Area (DIR + FAT regions). Depending

upon the size of the virtual disk, the size of the DIR region

and the size of the FAT region are calculated. The various

parameters for the virtual disk are specified in the Table 1.

The cluster size is decided as 4KB as this is the common size

used in Operating Systems. Each directory entry contains two

fields namely filename and starting cluster. The directory

entry size is 16 bytes because the filename maximum size is

decided as 14 bytes and 2 bytes for starting cluster number. A

2-byte unsigned number is used to represent a cluster number

and hence the maximum number of clusters supported is 216

clusters.

Let CS, CLMAX and VDSMAX be the cluster size, maximum

number of clusters and maximum size of the virtual disk

respectively. Then maximum size of the virtual disk that

system can support is given by Equation (3). The maximum

size of the virtual disk is 0.25 GB when cluster size is 4KB

and each cluster is represented by 16-bits.

 (3)

Equation (4) gives the maximum number of directory entries

(DEMAX), as a function of Cluster Size (CS) and each

Directory Entry Size (DES). The maximum number of

directory entries per cluster DEMAX is 256 when cluster size is

4KB and each directory size is 16 bytes.

 (4)

The specification of a virtual disk with various parameters is

presented in Table 1.

TABLE 1. The Specifications of Virtual Disk

Cluster size 4KB

Each FAT entry size 2 bytes

Maximum clusters 216 clusters

Max Virtual Disk Size 0.25 GB

Each DIR entry size 16 bytes (14+2)

Max no of DIR entries/ cluster 256 entries

Max no.of FAT entries/cluster 2K entries

minimum file size on disk 4KB

3.2 The Technique of Construction in

Construction Phase
In this phase, the user performs a sequence of command

operations of his choice. Each command is selected from the

following list; A) Create a new file B) Modify an existing file

C) Delete a file. The result of the sequence of operations is

that the user files are saved on the virtual disk (i.e., the

challenge file) in fragmented/contiguous areas depending

upon the availability of free clusters for each file just like the

kernel level file system saves files on a real disk. Therefore

 DIR FAT

Dir FAT Data Clusters

A A A … A B B … C C … B

 0s 0s

Dir FAT Data Clusters

A A A … A B B … C C … B

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

22

natural fragmentation is achieved. A script file containing the

sequence of commands automates the above operation.

Therefore automated generation of a natural challenge file is

achieved. The challenge file contains metadata during this

phase.

3.3 The Technique of Construction in Fine-

Tuning Phase
In this phase, the DIR and the FAT regions of the virtual disk

are erased so that the virtual disk is a real challenge for the

file carving algorithm.

After the three phases of construction are over the result is a

challenge file. It contains data of user files in data clusters but

does not contain any metadata. The script file automates

generation of this challenge-file. The files are naturally

fragmented just like a file-system fragments files on the disk

because the similar file-system is used but in user space.

4. DESIGN AND IMPLEMENTATION
This software system consists of the following four classes; 1)

DIR class 2) FAT class 3) FileSystem Class 4) UserSpace

Class. In this section, the responsibilities assigned to these

classes are described in detail.

4.1 The DIR Class
The DIR class is assigned with the following responsibilities.

1) Write a Directory entry 2) Obtain a free directory entry 3)

Obtain a start cluster of a given file 4)Make free an existing

directory entry.

Each directory entry consists of two fields. They are filename

and starting cluster number. The maximum size of a filename

is fixed as 14 characters. A two-byte integer number is used

to represent one cluster number. So each directory entry is 16

bytes. The member function is supposed to prepare the record

containing these two fields and should write this record to the

first free entry in the directory table. A slot in a directory

table is said to be free if it’s starting cluster number is zero or

filename starting byte is ‘_’. This operation needs to be

performed when a new file is created on a virtual disk.

To read a file present on the virtual disk, in conventional

method, we need to know the fat chain of a file. The fat chain

starting cluster is present in the directory region and the actual

chain is present in the fat region. The end of the fat chain is

marked as a number 0xFFFF. The initial cluster number is

obtained from the file’s corresponding entry in the directory

region.

When a file is deleted, the corresponding entry in the

directory region must be made free. When the first byte of a

filename, in the directory entry, is changed to ‘_’, it marks a

free cluster. When the directory region is initialized the

whole of it is written with all zeroes. It is not required to

make the starting cluster as zero for an entry corresponding to

the file being deleted.

In a kernel level file-system, each entry in a directory table

contains other attributes like file size, time of file creation etc.

From file-carving point of view, it is required to introduce

fragmentation naturally and therefore it does not require

storing all the attributes of a file in directory entry. So the

fields in a directory are restricted to filename and starting-

cluster number in user space file-system.aptions should be

Times New Roman 9-point bold. They should be numbered

(e.g., “Table 1” or “Figure 2”), please note that the word for

Table and Figure are spelled out. Figure’s captions should be

centered beneath the image or picture, and Table captions

should be centered above the table body.

4.2 The FAT Class
The FAT class is assigned with the following responsibilities.

1) Get the required number of free clusters 2) Given a set of

cluster numbers, form a fat chain 3)Obtain the fat chain given

a starting cluster number.

The FAT region is basically an array, each element occupying

2 bytes. When the FFAT entry is zero, then the corresponding

cluster is a free cluster. When a new file is created or when an

existing file is extended, we need a certain number of free

clusters on the virtual disk so that the new file data or

extended file data is written to these clusters. After writing

data to the free clusters, a fat chain needs to be formed. If a

file’s data is written to cluster numbers 10, 105 and 120 then

at the 10th location the element 100 is written. At 100th

location the element 105 is written. At 105th location, the

element 120 is written. At 120th location, the element 0xFFFF

is written. The value 0xFFFF marks the last cluster in the

chain. Suppose that a file is stored at cluster numbers 10, 105

and 120. When a file is to be read, starting cluster number is

obtained from a directory region. The value 10 is obtained

from the corresponding entry in a directory region. Then in

the fat region, the element at 10th location is read. Its value is

105. Then the element at 105th location is read. Its value is

120. Then the element at location 120 is read. The value at

this location is 0xFFFF. So the fat chain is 10->105->120.

So it reads data from cluster numbers 10, 105 and 120.

4.3 The FileSystem Class
The FileSystem class is assigned with the following

responsibilities. 1) Read the cluster data given a cluster

number. 2) write data to the specified cluster.

Irrespective of file type, the file system always views the file

content as a sequence of bytes. To read a file, a starting

cluster is obtained from a directory entry. Then the fat chain

is obtained from the fat region. Then one-by-one cluster data

is read to present it to the user application. So it is required to

have a facility in User Space File System (USFS) class that

reads the cluster data given a cluster number. When a new

file is created, it obtains a free directory entry, finds the

number of required clusters, forms fat chain and then writes

data to the data clusters. Therefore, in File System class it is

required to have one facility for writing the file’s bytes to the

specified cluster.

4.4 The UserSpace Class
The UserSpace class is assigned mainly with the following

responsibilities; 1) Create a file 2) Modify a file 3) Delete a

file. These operations are implemented using the facilities

provided by the above three classes.

To create a file F of size S requiring N number of clusters on

virtual disk the following steps are executed.

1. N = S / CLSIZE + (S%CLSIZE)?1:0

2. Using get_free_cls() of FAT class, obtain N number

of free clusters C0, C1, C2, … , CN-1.

3. Read file F’s data 4096 bytes at a time using the

kernel level file-system and write to Ci (i=0,1,2, … ,

N-1) of virtual disk using write_cl() of FileSystem

class.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

23

To delete a file F of size S requiring N number of clusters on

virtual disk the following steps are executed.

1. Locate the directory entry of F using

get_dir_entry().

2. Modify the first byte of the file name in the

directory entry to ‘_’

3. Make, all the clusters used by the file F, free using

free_next_cls() of FAT class.

To modify a file Fbefore (of size Sbefore requiring Nbefore

clusters) to Fafter (of size Safter requiring Nafter) on a virtual

disk, there are two cases namely 1) Extending the file 2)

Shrinking the file

Case 1: Extending the file F (Nbefore < Nafter)

1. Locate the directory entry of Fbefore using

get_dir_entry().

2. Find the fat-chain of Fbefore using the get_next_cls()

of the FAT class.

3. Calculate additional number of free clusters required

as (Nafter-Nbefore) and procure the free clusters by

using the get_free_cls() of the FAT class.

4. Prepare a FAT chain containing the Nafter number of

clusters using set_next_cls() of FAT class.

5. Read the file Fafter, 4KB of data at a time using the

kernel level file system and write to Ci (i=0,1,2, …

,Nafter-1) of virtual disk using write_cl() of

FileSystem class.

Case 2: Shrinking the file (Nbefore > Nafter)

1. Locate the directory entry of Fbefore using

get_dir_entry().

2. Find the fat chain of Fbefore using get_next_cls() of

FAT class.

3. Find additional number of clusters as (Nbefore-Nafter)

and make them free by retaining the initial clusters

of previous fat chain.

4. Prepare a FAT chain containing Nafter number of

clusters using set_next_cls() of FAT class.

5. Read file Fafter data 4KB at a time using kernel level

file system and write to Ci (i=0,1,2, … ,Nafter-1) of

virtual disk using write_cl() of FileSystem class.

The programming language C++ is used to implement the

above classes. The four C++ classes are given below.

class DIR

{

public:

int write_dir_entry(char *fn , unsigned int sc) ;

unsigned int get_free_entry() ;

unsigned int get_start_cluster(char *fn) ;

int make_dir_entry_free(char *fn) ;

} ;

class FAT

{

public:

ui get_free_cl() ;

ui get_next_cl(ui clno) ;

ui get_next_cls(ui clno , ui cls[]) ;

void set_next_cl(ui clno , ui nextcl) ;

ui FAT::operator [] (ui clno);

int get_free_cls(u icls[] , ui n) ;

void set_next_cls(uicls[] , ui n) ;

void free_next_cls(ui cls[] , ui clcnt) ;

} ;

class FileSystem

{

public:

 void read_cl(ui clno , uc b[CLSIZE] , ui bytecnt) ;

 void write_cl(ui clno , uc b[CLSIZE] , ui bytecnt) ;

} ;

class UserSpace

{

DIR dir ;

FAT fat ;

FileSystemfs ;

char command[60] ;

charcmd[20], char arg1[20], char arg2[20] ;

public:

voidshowfile() ;

void format() ;

voidhdump(ullow=0 , ul high=240) ;

void write(char fn[]) ;

void directory() ;

ui del() ;

void modify() ;

UserSpace() ;

void create() ;

void help() ;

} ;

Implementation of the two important operations of FileSystem

class is explained now. The read_cl()member function reads a

specified cluster from a challenge file into a buffer b. Using

fseek() the file pointer is made to point to the starting byte of

the specified cluster. fread() is used toread the cluster of size

4KB into buffer b. The write_cl() member function writes a

buffer ‘bytes’ to a specified cluster on virtual disk. Using

fseek() the file pointer is made to point to the starting byte of

the specified cluster. fwrite() statement writes the buffer of

size 4KB to the virtual disk.In the above two member

functions and all other applicable member functions,

“test.dat” is a virtual disk and acts as a challenge file after

completing the three phases of construction.

voidFileSystem :: read_cl(uiclno , uc b[] , uibytecnt)

{

FILE *fp = fopen("vdisk" , "rb") ;

fseek(fp , CLSIZE * (long)clno , 0) ;

fread(b , 1 , bytecnt , fp) ;

fclose(fp) ;

}

The program utilizing the above classes is compiled and

executed using Turbo C++ compiler and the results of the

experiments are presented in the next section.

5. EXPERIMENTS AND RESULTS
The various operations supported by User Space File System

(USFS) software for the user are shown in the screenshot in

Figure 6. It also shows the response of “directory” command.

In the screenshot, vd> is a prompt for the user. The prompt vd

is a short form for virtual disk. “?” is a command to display a

list of commands that are available for the user to execute.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

24

Figure 6. Responses of “?” and “directory” commands

When “del” command is executed, it can be seen that the total

files is 5. And it can also be seen that the deleted filename’s

starting byte is changed to “_”. This is the procedure adopted

in FAT file system.

Figure 7. Screen shot of “directory” command after “del” command

Figure 8. Response of “hexdump” command showing subcommands for browsing through the virtual disk content and

showing the selected page in three sections (offset range, hex bytes and character-equivalent of each byte)

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

25

In Figure 8, screenshot of “hexdump” command is shown. It

contains the cluster number at the top followed by a list of sub

commands and followed by a table showing the content of

challenge file. The table has 3 columns. The first column

gives offset range. The second column displays content in the

specified offset range, in hex formats. In third column, same

content in the form of text is displayed. The table 2 gives the

list of sub commands of “hexdump” command and their

actions. These sub-commands help file carver developer to

view different portions of the challenge file. For example,

user may want to view a specific portion of a cluster because

some file carvers compare ending portion of cluster I with

starting portion of cluster J [3,8].

Table 2. Subcommands of ‘hexdump’ command

Command Action

d To display directory region

f To display fat region

n To display next page

p To display previous page

N To display Next Cluster

P To display Previous Cluster

Finally “format” command is executed as part of the fine-

tuning phase that erases the metadata. A disk containing files

content but not containing the metadata of files is the prime

condition for any file carving algorithm.

6. BENEFITS OF AUTOMATED

GENERATION

 Avoid purchase of physical used disks.

 Disk size flexibility

 Natural generation of challenge file

 Avoid artificial /manual generation of challenge file

 Various scenarios can be generated on each virtual

disk

 Number of virtual disks can be created

 The virtual disk can be zipped and sent easily over

an internet

 Avoids read/write operations on physical disk in raw

mode

 Researchers can implement their new ideas of file

system without the need to work at kernel level

 Before the final step of automated construction, the

directory and fat regions contain the correct answer

to the proposed challenge.

 International workshops like DFRWS can create

challenge files using USFS and compare participants

results with the correct results available in the

directory and fat regions before fine-tuning step

 In-place file carving is a technique that avoids

creation of carved files on host disk [9]. Such

techniques can be tested conveniently using this tool

by writing appropriate data directory and fat regions

of virtual disk.

 The source code can be used on any platform where

as FUSE and Kernel level programming are specific

to Linux

7. CONCLUSION

Every file carver algorithm attempts to carve a file of specific

type from file fragments without using file’s metadata from

file system data structures. For conducting experiments to

ascertain the correctness of the new algorithms designed by

researchers, they need a test hard disk, in which, the test

patterns are saved and used as inputs for the program that

implements the algorithm developed. Every file carver tool

treats the disk under examination in raw mode. And hence

computer system’s hard disk cannot be used directly for safety

of the data present on it during the testing experiments. The

User Space File System (USFS) of this paper avoids the

purchase of the test disk as well as avoids the accessing of the

hard disk of the computer system in raw mode, by creating a

virtual disk on computer system’s hard disk and fully utilizing

the kernel file systems APIs for accessing the virtual disk.

This is safe and cost effective approach for providing the

input scenarios during development phase of a file carver tool

for professionals and a file carver algorithm for researchers to

conduct experiments. A virtual disk can be created containing

fragmented or contiguous files of file type of user’s choice by

executing simple commands; create, delete and modify

commands. At the same time, layout of the metadata and user

data on the disk (i.e. virtual disk) can be seen by using

hexdump command. “hexdump” command provides white

box approach for the complete disk data. Hence this can be

utilized by professionals and researchers to understand the

input data applied to file carver tool. So the correct working

of tool or algorithm is possible as the command allows the

browsing through the data on every part of the virtual disk.

In future work, authors would like to improve User Space File

System (USFS) tool in the following aspects. Firstly, during

browsing operation, raw data is provided to the user of the

tool and the user has to make out what the data means. For

example, using hexdump, one can come to know whether a

given file is saved on the virtual disk as fragmented or saved

on contiguous region of the virtual disk, by browsing through

the various sections of the virtual disk. But a command that

tells the user whether a given file is fragmented or not,

provides more comfort or beneficial. Secondly, user of the

tool may want to know the list of cluster numbers consumed

by a given file on the virtual disk. Though this information

can be obtained by browsing through various sections of the

virtual disk, it will provide more comfort to the user if there is

a command that gives the list of cluster numbers that are used

for saving the file’s data. Thirdly, a provision that allows to

execute a batch file or script file containing a predetermined

set of commands to create a specific scenario, is more

appropriate because this approach allows the user to create

multiple virtual disks each having one scenario or number of

scenarios as per the requirements of the user, for effective

utilization of user’s time. Finally, authors would like to

illustrate how to utilize USFS tool for automated generation

of input for unconventional method of accessing image files

with the help of a simple file carving tool presented in [7].

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 7 – No. 9, November 2017 – www.caeaccess.org

26

8. ACKNOWLEDGMENTS
We would like to convey our sincere thanks to all the staff

members of Sree Chaitanya College of Engineering,

Karimnagar, India for extending their full cooperation during

the writing of this paper. Also we express our gratitude to all

the staff members of CSE at JNTUH College of Engineering,

Jagtial for their suggestions and continuous support during the

period of writing of this paper. Finally we thank our family

members, without whom this work would not have been

possible, for their patience and constant support.

9. REFERENCES
[1] https://www.dfrws.org

[2] Andreas Dewald, Sabine Seufert, “AFEIC: Advanced

forensic Ext4 inode carving”,DFRWS 2017 Europe –

Proceedings of the 4th Annual DFRWS Europe – Elsevier

Journal - Digital Investigation 20 (2017) S83-S91

[3] Nasir Memon, Anandabrata Pal, “Automated

Reassembly of File Fragmented Images Using

GreedyAlgorithms”,IEEE Transactions onImage

Processing, Volume 15,No.2, February,2006

[4] Anadabrata Pal, Nasir Memon, “The Evolution of File

Carving: The benefits and problems of forensics

recovery”,IEEE Signal Processing magazine Vol. 26. No

2. March 2009.

[5] Simson L. Garfinkel: Carving contiguous and fragmented

files with fast object validation, ELSEVIER, Digital

Investigation, 2007.

[6] Nadeem Alherbawi, Zarina Shukur and Rossilawati

Sulaiman, “A Survey on Data Carving in Digital

Forensics”,ISSN: 1682-3915 - Asian Journal of

Information Technology 15 (24): 5137-5144, 2016.

[7] K. Srinivas, T. Venugopal: Design and Implementation

of File Carving Algorithms in Computer Forensics ,

National Conference on Advances in Computing and

Networking, Computer Society of India - JNTUH

College of Engineering, Manthani, Karimnagar p81-87,

December 2014.

[8] Kulesh Shanmugasundaram, Nasir Memon: Automatic

Reassembly of Document Fragments via Context Based

Statistical Models, ACSAC '03 Proceedings of the 19th

Annual Computer Security Applications Conference,

IEEE Computer Society Washington, DC, USA.

[9] Xinyan Zha and Sartaj Sahni: Fast in-place file carving

for digital forensics, Springer Link, 2011.

