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ABSTRACT
This work presents an auto-configurable algorithm for finite state
prediction. The specificity of this algorithm is the capacity of
self-rectification of the prediction strategy before final decision.
The auto-rectification mechanism is based on two parallel math-
ematical models : a Markov chain model for next state predic-
tion rectified with a linear regression model for residues fore-
casting. For a normal distribution, the interactivity between the
two models allows the algorithm to self-optimize its performance
and then make better prediction. This work proposes also some
statistical key performance indicators in order to prove the ef-
ficiency of the approach. Simulation results shows the advan-
tages of the proposed algorithm compared with the traditional one.
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1. INTRODUCTION
In some systems behaving randomly, the missing of decision in-
formation presents, in one hand, some difficulties to maintain
good processing going on. In the other hand, usually the man-
ager needs to anticipate decision information to prepare adequate
action planning. Prediction patterns so, seem to be the right so-
lution to get necessary information from a random environment.
Current prediction technics, based on Markov’s theory and sta-
tistical analysis, learn just from historical observations and do
not include prediction residues as a supplementary experience
int order to adjust initial prediction strategy. This paper comes to
contribute on intelligent prediction algorithms with strategy self-
rectification capability. The work presents a hybrid prediction al-
gorithm using on observations history, as a first experience, and
prediction residue history as second supplementary experience.
That allows prediction operation to benefit from double experi-
ence witch gives it more perfection.
The content of this paper is organized as follows : the section
2 presents some related works, while the third section intro-
duces the mathematical modelling of the prediction rectification
mechanism. The algorithm design and computational complexity
analysis are reported to the fourth section, while the key perfor-
mance indicators design and the simulation results are presented
in section 5. Finally, Section 6 presents concluding remarks fol-
lowed by discussion of next works.

2. RELATED WORKS
Several prediction models are discussed by many authors. For
one thing, M.M. Mohie El-Din and al (2011) explain in [1] that

one way to predict the future observation is the building of an in-
terval, called prediction interval, which contains the next obser-
vation with a fixed probability. For an other, M. Hossain (2013)
introduces in [2] prediction model based on Beleaf Bayesian
Network for a real-time crash prediction. In order to increase
performance aspects, some approaches combine more than one
prediction model as described in [3] (2013) by D. Ying Ying and
al. That allows us to think about the design of a hybrid algo-
rithm implementing more than one model. C.-J. Cheng and al,
in [4], uses Markov chains to predict customer lifetime, however
M. Cavers and al used in [5] a Markovian transition matrix to
represent recurrent states of an Earthquake sequences grouped
in zones. In an other side, linear regression is used also for fore-
casting next value and the trend extraction according to works of
D. Ying Ying Sim and al in [7] (2014) and J. Guo-xun and al in
[8] (2011).
In this work we propose a finite state prediction algorithm. For
this, the use of Markov chains ([3], [4] and [5]) seems to be the
best way to predict environment discrete states. In an other side,
the auto-rectification mechanism relies on linear regression ([7]
and [8]) to extract the residues trend and predict eventual next
residue.

3. MATHEMATICAL MODELLING
3.1 Environment Modelling
Let suppose an environment behaving randomly and X the ran-
dom variable representing the supervised parameter on the envi-
ronment. This one can be the free memory size of a Web server
for example or the available bandwidth of an IP channel. We
define Xn as observed value of the random variable X at the in-
stance n. The supervised parameter, at the next instance n + 1,
changes the previous state Xn by adding an algebraic quantity
that we call ∆n+1. We can finally write :

Xn+1 = Xn + ∆n+1 = f(Xn,∆n+1) (1)

The expression of Xn+1 in equation 1 confirms that the state
sequence (Xn, n ∈ N∗) is a Markov chain.

3.2 State Prediction Model
Let consider the Markov chain (Xn, n ∈ N∗) having values in
a finite state E. Transition matrix at the instant n + 1, denoted
(P(n+1)

ij ), is given by the conditional probability to observe j at
the next instant if we know that we have observed i in the past :

P(n+1)
ij = p(Xn+1 = j|Xn = i)

The probability to observe a given element j at the instance n+1,
considering all observations probabilities, is given by total prob-
ability law :

p(Xn+1 = j) =

Q∑
i=1

p(Xn = i)P(n+1)
ij (2)
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Initially, we suppose that all observations are equiprobable, it
means that p(X0 = i) = 1

Q
for each i ∈ E with Q = Card(E).

After each observation, the matrix (Pij) will be updated and that
guarantees learning from experiences. LetX∗n+1 be the predicted
value using the Markov transition matrix for the next instant n+1
is given by the equation 3 :

X∗n+1 = arg max
j∈E

p(Xn+1 = j) (3)

3.3 Residue Modelling
Let εn be the prediction residue done at the instant n. We de-
fine it as the algebraic distance between the observed value and
the predicted value for the same instant. The choice of algebraic
distance and not the euclidian distance for example is due to the
need of the sign, the residue of the prediction should translate
the fact that the algorithm had predicted a value more than the
necessary or less than it. Formally :

εk = X∗k −Xk (4)

Let’s {ε1, ..., εn} be historical residues set. We represents those
data points with a linear model having the form ε∗k = α.k + β,
with k represents the instant and ε∗k the corresponding residue
in the linear model. The choice of a linear model is due to the
need of extraction of the trend on residues cloud and then predict,
approximatively, the next eventual residue. The parameters α in
equation 5a and β in 5b are estimated with the least mean square
method, See the proof in Appendix A. We write :

α =
12

n3 − n
.

n∑
k=1

εk

(
2k − n− 1

2

)
(5a)

β =

n∑
k=1

εk

(
3(n+ 1− 2k)

n2 − n
+

1

n

)
(5b)

3.4 Rectification Mechanism
Let X∗n+1 be the predicted value obtained with the model 3 and
ε∗n+1 the residue that we can make by deciding that the next
value is X∗n+1. This residue is estimated with the linear model
described in the previous subsection. The aim of this work is
to develop the mechanism allowing the algorithm to auto-
rectify its decision taking in consideration the future residue
that it eventually can do. The main idea is that the algorithm
makes double prediction based on two different models : the first
prediction is the next state of the environment using the approach
in equation 3 and the second prediction is the next residue ob-
tained with the trend of residues. With the two future information
we build an interval I centred with X∗n+1 and having the radius
ε∗n+1.

X̃∗n+1 = arg min
u∈E
||X∗n+1 − u| − ε∗n+1| (6)

4. ALGORITHM DESIGN
This section presents the main algorithm, named iNSP ”Intelli-
gent Next State Predictor”, who makes the next state prediction.
The algorithm 1 implements the equation 6 to rectify the initial
decision obtained by the model 3.The total complexity of the al-
gorithm iNSP is Θ(n). See the proof in Appendix B. The next
residue serving the rectification process is given by the linear
model whose coefficients are computed by 5a and 5b. This rec-
tification comes to find the nearest state from a bound, right or
left, of the interval I . See the algorithm :
The table 1 summarises the computational complexity analysis
of the algorithm 1 :

Algorithm 1: iNSP

Input: −→ε : Residues History
Output: X̃?

n+1 : Rectified Prediction

1 vTmp← 0
2 foreach u ∈ E do
3 if πn+1(u) > vTmp then
4 vTmp← πn+1(u)
5 X∗n+1 ← v

6 ε?n+1 ← α(n+ 1) + β

7 vTmp← +∞
8 foreach u ∈ E do
9 if vTmp > ||X∗n+1 − u| − ε∗n+1| then

10 vTmp← ||X∗n+1 − u| − ε∗n+1|

11 X̃?
n+1 ← u

12 return X̃?
n+1

Line number Elementary Operations Complexity class

2 and 15 2 Θ(1)
3 to 6 3Card(E) Θ(Card(E))

8 41n− 4 Θ(n)

10 to 14 9Card(E) Θ(Card(E))

Table 1. : Complexity Analysis of Algorithm 1.

The complexity Θ(Card(E)) is a constant complexity class
Θ(1) because E is a finite states set whatever the observation
number. Total complexity ζT (n) is given by the maximum of all
structured blocks complexities :

ζT (n) = max(Θ(1),Θ(n)) = Θ(n)

5. SIMULATION RESULTS
5.1 Key Performance Indicators
The aim of this section is the proof, by simulation, that proposed
algorithm is able to improve the performance by learning from
its experience. We present a Monte Carlo simulation in which we
simulate the supervised environment by a generator of random
states. In order to prove the reliability of the approach, we have
designed some key performance indicators (KPIs) to study the
performance aspects of proposed approach compared with the
traditional one described in literature.

5.1.1 Cumulative Residues Indicator. We define this indicator
as the cumulative function of all residues from the beginning of
the simulation until its end. This KPI is computed for the tradi-
tional approach and the proposed one simultaneously. We define
Γta(u) and Γpa(u) as the cumulative residues of the traditional
approach and proposed approach respectively. Formally :

Γta(u) =

u∑
n=1

εn (7a)

Γpa(u) =

u∑
n=1

ε̃n (7b)

Previous KPI in equations 7a and 7b are computed during a sim-
ulation of 2000 observations randomly generated. The figure 1
shows obtained results :
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Fig. 1: Cumulative Residues : Comparative Study

The figure 2 shows how residues are distributed for each ap-
proach. It is evident, according to the graphic, that small
residues, from −1 to 1 are more done by the proposed approach
iNSP. However big residues, in range from 1 to 4, are more done
by the traditional approach. See the figure 2 :

Fig. 2: Residues Distribution : Comparative Study

5.1.2 Decision Indicators. We define the KPI d+ as the aver-
age of all observations having the residue at a given instant less
than the residue at the previous instant [9] (2014). The function
1{εk>εk+1} is equal to 1 if εk > εk+1 and equals to 0 otherwise.

d+ =
1

Q

Q∑
n=1

1{εk>=εk+1} (8a)

d− =
1

Q

Q∑
n=1

1{εk<εk+1} (8b)

The cumulative residue of all the simulation is given by Γta(Q)
and Γpa(Q) respectively for the approaches with Q is the sim-
ulation sample size. Otherwise, let εt be the tolerable residue
fixed in the simulation at 1. Based on it, we define the tolerable
residues averageE(ε̃t) for the rectified prediction : proposed ap-
proach and E(εt) for the traditional one. Formally :

E(ε̃t) =
1

Q

Q∑
n=1

ε̃n1{ε̃n≤εt} (9a)

E(εt) =
1

Q

Q∑
n=1

εn1{εn≤εt} (9b)

The KPIs in equations 8a, 8b, 9a and 9b are computed during a
Monte Carlo simulation and results are shown in the table 2 :

Key Performance Indicator Value

Good Decision Rate for Traditional Approach 63.982 %
Good Decision Rate for Proposed 64.082 %
Bade Decision Rate Traditional 36.018 %
Bade Decision Rate Proposed 35.918 %
Tolerable Residues Average Traditional 42.174 %
Tolerable Residues Average Proposed 57.825 %
Cumulative Residues Traditional 58.915 %
Cumulative Residues Proposed 41.084 %

Table 2. : KPI Values : Comparative Study.

6. CONCLUSION
This paper presents a finite state prediction algorithm with low
computational complexity. The specificity of this algorithm
is the self-rectification capacity of the prediction strategy.
Designed algorithm is based on Markov chain theory as a main
prediction model and linear regression as rectification model.
Proposed key performance indicators, computed during the
simulation, shows that the proposed algorithm is really able
to self-improve performance aspects and we conclude that
prediction’s perfection benefits from double experience and that
makes it increasing.

There is no doubt that with the self-configurable algorithms
designed for state prediction, the Big Data Analytic field can
benefit considerably [10], [11]. Learning from large volumes
of data, stored by sensors for example on exchanged by social
networks, looses significance without sensitive algorithms able
detects the trend changes. As perspectives, the use of proposed
algorithm in financial markets state forecasting is a crucial
application field. That can be by building an indicator that
gives buy or sell best times or more technically, by building
an automatic program, that makes decision it self and sends
commands to brokers servers.
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Appendices
Appendix A : Linear Model Proof
Having data {(1, ε1), ..., (n, εn)} and the linear model repre-
senting those data with the form : ε∗k = α.k + β. Using the
Least Mean Square method [8], we find the coefficients α and β
minimizing the quantity :

en =

n∑
k=1

[εk − ε∗k]2

In order to find the coefficients minimizing the quantity above,
we have to solve the equation :(

∂en
∂α

,
∂en
∂β

)
= (0, 0)

The calculation of the two derivatives gives the following :

α

n∑
k=1

k2 + β

n∑
k=1

k =

n∑
k=1

kεk

α

n∑
k=1

k + nβ =

n∑
k=1

εk

In order to simplify, we replace summations with :
∑n

k=1 k =
n(n+ 1)/2 and

∑n
k=1 k

2 = n(n+ 1)(2n+ 1)/6. After simpli-
fications we have got (5a and 5b) :

α =
12

n3 − n
.

n∑
k=1

εk

(
2k − n− 1

2

)

β =

n∑
k=1

εk

(
3(n+ 1− 2k)

n2 − n
+

1

n

)
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