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ABSTRACT 

A relation between the Laplace transform and the generalized 

Hankel-Clifford transform is obtained. An attempt has been 

made to establish the relation between distributional 

generalized Hankel-Clifford transform and distributional one 

sided Laplace transform. The results are verified by giving 

illustrations. 
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1. INTRODUCTION 
Schwartz first introduced the Fourier transform of 

distributions in 1947. Since then, extension of the classical 

integral transformation to generalized functions has been of 

continuing interest.  In Zemanian [9], Laplace transformations 

of distributions can be studied. Finite Hankel and Hankel type 

transform of classical functions were first introduced by 

Sneddon [8]. Malgonde and Lakshmi Gorty [10] extended 

generalized Hankel-Clifford transforms to certain spaces of 

distributions as a special case of the general theory on 

orthonormal series expansions of generalized functions. In [2, 

6], the authors have shown that, for any positive arbitrary 

value, the transform of Kekre function is obtained and how 

Kekre’s function is related to inverse Laplace transforms. The 

generalized representation of the Laplace transforms of 

Kekre’s function is also formulated. Author in paper [6] 

defined a finite generalized Laplace Hankel-Clifford 

transformation of a certain generalized functions, and 

established an inversion formula. It is quite well known that 

there are several problems which can be solved by the 

repeated applications of the transformations. If an integral 

transforms constructed for which the kernel is the product of 

the kernels of the Laplace and Generalized Hankel-Clifford 

transformation of the first kind, integral (special) transform as 

Laplace Hankel-Clifford transform which is successfully 

applied to deal with the problems occurring in mathematical 

physics shown in [7].   

2. PRELIMINARY RESULTS 
The Laplace transform of a function of a function 

 ( ) 0,f t L   is defined as: 

      ; ; Re 0
0

pt
L f p e f t dt p

 
          (1) 

and Malgonde [4] investigated the variant of the generalized 

Hankel-Clifford transform defined by 
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where    
     

/2
2 ,, t t J t J t

 

     


  J , being 

the Bessel function of the first kind of order    , in spaces 

of generalized functions. Note that (2) reduces to well-known 

Hankel-Clifford transform for suitable values of the 

parameters viz. for 0   and    , a transform studied 

in [4].      

A relation between the Laplace transform of   t f t   and 

the generalized Hankel-Clifford transform of  f t ,  when  

  Re 1    . The result is stated in the form of a 

theorem which is then illustrated by an example. 

Theorem 1: If  f and    ,h f    belongs to  0,L   and 

if      Re 0, Re 0, Re 1;a p       then 

      ; , ,,
0

L t f t p k p h f d
 

   


  where  ,k p 

 1

11
1 1 ,1 ,p F

p

  
       

       
 

. 

Proof. Since  0,f L  , by the generalized Hankel-Clifford 

inversion theorem [4], that 

      , ,

0

f t h f t d 

      


  J . 

Hence 

  

     , ,

0

L t f t

h f L t t d

 

   

      





   J

. 

The change of order of integration is justified because 

 0,
pt

e t L
  

  if  Re 1;     Re 0p  and  

    , 0,h f L     ;  , t  J  being a bounded function of 

both the variables. The theorem then follows from the fact [8] 

that  
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J

   (3) 

Example 1: Let   1n atf t t e  . Then 

      ;
n

L t f t p p a n
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and   
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= ; .
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 (5) 

This last integral can be evaluated by using (3). Substituting 

these expressions in the theorem analogous to [5]; the result is 
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where  
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0, Re 0, Re 0, Re ;
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2
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3. RELATION BETWEEN 

TRANSFORMS TO THE SPACE OF 

DISTRIBUTIONS 
Let   ,h f    is a testing function space for generalized 

Hankel Clifford transform and   ,h f    is its dual. 

   , and L w z L w   are testing function spaces for Laplace 

transform and    , and  L w z L w   are their duals respectively. 

Since the testing function space   , ,h f    

   , and L w z L w  are subspace of E , the space of 

distributions of compact support  E  is a subspace of all the 

generalized function space   , ,h f      , and L w z L w  . 

The restriction     , ,f h f L w z     to E  is a member 

of E [4].  In order to extend the relation (3) to the space of 

distributions, a lemma is stated.  

Lemma 1 If  ,f L w z  then the mapping 

     , nf x x x f x 

    J  is a linear and continuous from 

 L w  into itself.   

Proof:  For each integer 0k   there exists an integer 
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that  
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where 0 x   and where the   ja   are constants 

depending on     only as in [1].  

Therefore   1/2( )/2 2 .n Mx J x 

    

   

 As  ,pxe L w z , the mapping 

  1/2( )/2 2px px

ne x J x e 

     

   is linear and 

continuous from  ,L w z into itself and the adjoint mapping  

     , nf x x x f x 

    J  defined by  

   

   

,

,

,

,

px

n

px

n

x x f x e

f x x x e

 

 

 

 





  

  

J

J

     (6)  

is a linear and continuous from  ,L w z  into itself [3] 

[Theorem 1.10 and Sec. 2.5], where  

   ,, , ,
px

f L w z e L w z


   , .n Mx J x 

       

Lemma 2. Let   ,f h f    then mapping 
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   pxf x e f x  is a linear and continuous   ,h f    

into itself.  

Proof: Since for each nonnegative integer k  there exists an 

integer 
kN  such that  

 
/2

1 k

k
px

N

x D e

x

 

 


 for 0 x   . Thus  

px

Me    the space of multipliers for   ,h f    

[4]. As 
px

e M


 , the mapping 

   , ,
px

x x e x xn n
   

    
   

J J  

 is a linear and continuous from    ,h f    into itself and 

the adjoint mapping    pxf x e f x  ,    ,f h f    

defined by 

    

   

,

,

,

,

px

n

px

n

e f x x x

f x x x e

 

 

 

 





  

  

J

J

   (7)  

is a linear and continuous from   ,h f    into itself, where 

  , ,f h f       , , .nx x h f 

      J  

Theorem 2. If f E ; then 

       , ,, ,
px px

e f x x x x x f x en n
   

    
    

J J   

for  
1

Re , 0;
2

p n        .  

Proof: Since the testing function space    ,,h f  

   , and L w z L w  are subspace of E , the space of 

distributions of compact support E is a subspace of all the 

generalized function space       , , and  ,h f L w z L w 
    

[4]. Therefore the restriction of   f L w  to  ,L w z  is in

 ,L w z
 
and the restriction of     ,,f h f L w z 

   to 

E  is a member of E . In view of above the result is obvious 

from Lemma 1 and Lemma 2 for every f E , since the 

right hand sides of the equations (6) and (7) are equal. 

Therefore the equality becomes 

       , ,, ,
px px

e f x x x x x f x en n
   

    
    

J J

holds good for  0 Re ,p   
1

0;
2

n      . 

4. CONCLUSION 
Relation between Laplace and generalized Hankel-Clifford 

transform is established. A testing function space for 

generalized Hankel-Clifford transform and is its dual is 

established in this paper. The testing function spaces for 

Laplace transform and their duals are derived. There are 

examples given in the text and Lemma have been established. 

These relations can be applied to many applications in physics 

and electronics.  
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