

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

38

Bin Packing Algorithms with Applications to Passenger

Bus Loading and Multiprocessor Scheduling Problems

Taiwo O. Ojeyinka
Department of Computer Science,

Adekunle Ajasin University, Akungba-Akoko,
Ondo State, Nigeria

ABSTRACT
The problem of arranging items into bins in order to minimize

the overall number of used bins was implemented and

evaluated using the online and offline bin packing heuristics.

The study implemented the fill function to evaluate the

performance of both the online and offline variants of bin

packing heuristics. The algorithms were applied to some

commonly occurring NP-hard problems whose solutions

require optimisation e.g. the passenger-bus scheduling and the

multiprocessor job scheduling problems. The results of the

evaluation show that the minimisation function varied w.r.t. the

sizes of the items and also of the bins. Results further shows

that a minimised resource allocation and makespan are feasible

for the passenger-bus scheduling and the multiprocessor job

allocation respectively.

Keywords
Bin packing, resource allocation, heuristics, NP-hard,

passenger-bus, multiprocessor

1. INTRODUCTION
NP-hard problems are computationally intensive problems

which use a set of algorithms known as heuristics whose

solutions may not be optimal use algorithms that do not

guarantee an optimal solution. A heuristic is an “intuitive” way

to find a valid and often reasonably good solution for a given

problem in a “reasonable” lapse of time [10]. In this study

heuristics are those procedural algorithms that pack items

straight into bins, there is no high-level heuristic guiding other

heuristics, nor is more than one repacking of items allowed.

Additionally, the solution is certain to be feasible.

For instance in a job shop scheduling problem in which n jobs

of varying sizes are scheduled on m identical machines with the

objective of minimizing the total processing time of all the jobs,

one heuristic to solve the problem might be first-fit, or first-fit

decreasing, or first-fit increasing, or best-fit or any of its

variants etc. However, achieving the best solution to the

problem is very difficult with heuristics hence they are not

considered as general approaches. Heuristics are considered the

best solution when time of execution is considered an essential

factor, but they can produce very poor results especially when

quality is taken as an important into consideration because they

depend on the nature and the instance of the problem. In the

Bin Packing Problem, a number of heuristics exist from first-fit

to best-fit or worst-fit and other variants. Each of these

heuristics consists of putting objects of varying sizes (or

weights) into the first or best or worst bin respectively

(depending on the sizes of the bins), that can take it. Each one

has shown to give good results in each case though not

necessary the optimal level.

For the purpose of this study, two problems which can be

solved with heuristic algorithms are presented: 1) passenger-

bus allocation and 2) multiprocessor job allocation problems.

The goal of this study is to minimise the total number of

identical bins required to pack a number of items based on the

heights or the weights of the items, and use the procedure to

provide efficient. 1) Allocation of passengers to buses: the

objective is to allocate efficiently buses to finite set of

passengers in such a way that the overall number of buses and

the total number of seats occupied are minimal. 2) Improved

job allocation strategy for multiprocessor scheduling problems:

the objective here is to allocate processors to a set of processes

in a multiprocessor such that the overall makespan is minimal.

Generally, packing problem is a daily affair which is inevitable

as people have need of packing items from place to place hence

the necessity of bin packing algorithm. Optimizing the solution

to bin packing problem can therefore not be overlooked. This

study will expose the application of bin packing heuristic

algorithms and also enhance their uses in scheduling and

resource allocation problems since the heuristics represent a set

of approximation algorithms to some NP-hard problems. The

work considers the process of allocating a finite set of items

into bins using a specified number of heuristic algorithms.

2. THE BIN PACKING ALGORITHM
Bin packing problem has been studied since the early 70's and

different variants of the problem continue to attract researchers'

attention. The bin packing algorithm is a general assignment

problem often found in optimisation methods in computer

science and operations research. According to [3], the bin

packing problem is defined as follows:

“Given a finite collection of n sizes (or weights) s1, s2, s3,

... , sn, and a collection of identical bins with capacity C

(which is greater than the largest of the sizes), find is the

minimum number k of bins into which the sizes can be

placed without packing beyond the bin capacity C?”

The bin packing problem consists of k number of identical bins

each of capacity C for which a finite collection of objects with

sizes s1, s2, s3... sn are required to be stored and whose total sum

is greater than the bin's capacity. In this study, the capacity C

and the sizes s are positive integers and each individual size is

less than the bin capacity C. The aim is to find the minimum

number of bins that can accommodate all the items (either in

terms of their weights or sizes). This case is the one-

dimensional bin packing problem, but there are other variants

of bin packing problem such as 2D packing, linear packing,

packing by weight, packing by cost, etc. A typical application

of the bin packing problem, which is closely related to the

problem under study, is that of loading trucks with weight

capacity constraints. Other applications are filling up

containers, and creating file backups in removable media. The

two dimensional bin packing (2BP) considers packing of items

with both the size and the weight of each item during packing

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

39

in order to achieve the same objective of using a minimum

number of bins as the one dimensional problem, [2]. Typical

applications of 2D packing includes transportation in airlines

luggage loading or the loading of varying sizes of containers on

the ship. Industrial applications includes optimal cutting of

ceramics, glass, wood etc. [4]. Three dimensional bin packing

(3BP) problem also exists. It is much more complex than the

2BP but it is less studied.

The classical bin packing problem is given as a set of items I

with a size or weight function s/w: I → (0, 1]. The objective

here is to pack the items into as few unit sized bins as possible.

The packing is known as online if the order of bins and the

packing are not known in advance. This has resulted into

variants of online bin packing. First, the classical online bin

packing addresses a non-deterministic arrival of items over

time and are required to be packed as they arrive. The dynamic

bin packing problem is such that allows items to be removed or

depart over time. The model has applications in 1.) Pick-and-

drop bus transit system, the operating system loading of

programs on the memory, reading and writing files on random

access disks etc. When already packed items are allowed to be

rearranged, the packing is known as relaxed online bin packing.

A dynamic bin packing with repacking is called fully dynamic

bin packing. See Table 1 for an overview of different models.

Table1: Online bin packing models

Name Deletion Repacking

Online Bin Packing ✗ ✗

Relaxed Online Bin Packing ✗ ✓

Dynamic Bin Packing ✓ ✗

Fully Dynamic Bin Packing ✓ ✓

A number of heuristics are available for solving the bin packing

problem.

a. The First-Fit (FF) algorithm places a new object of

weight in the first bin that has space to accommodate

it.

b. The Last-Fit (LF) algorithm follows the first-fit except

that it places a new object in the last bin.

c. The Next Fit (NF) algorithm places a new object in the

next bin, starting a new bin if necessary.

d. The Best Fit (BF) algorithm places a new object in the

most-filled bin that still has space to accommodate it.

e. The Worst Fit (WF) algorithm places a new object in the

least-filled existing bin.

f. The Almost Worst Fit (AWF) algorithm places a new

object in the second least-filled bin.

Fig. 1: A schematic diagram of 10 items packed into 5 bins

A straightforward approach to solving this type of problem is to

divide the total sum of the sizes by the capacity of the bins. [3].

Assume integer numbers, the minimum number of bins is:

 Eq. 1

Using either FF, WF, NF or BF the required amount of time to

compute the minimum number of bins is n log n where n is the

number of sizes [3].

A

4

7

3

2

B C A B C A B C A B C

First-Fit Best-Fit Worst-FitBefore Packing

Fig. 2: Example illustrating the bin packing algorithms.

As an illustration in Fig 2, suppose that there are currently three

bins which have capacity 10 and have unused space as follows:

Bin A, 4 units, Bin B, 7 units, and Bin C with 3 units. Suppose

the next arrived item in the list is of size 2. By using First Fit

the item is put in Bin A, Best Fit puts it in Bin C, and Worst Fit

puts it in Bin B.

The offline bin packing problem is one where all the sizes of

the items are known before the packing. Several heuristics have

been studied to this end for the packing of items using the

offline BBP. Unlike the online algorithm which is a real time

problem, the offline variant is not real time.

Items

Bin B Bin CBin A

9

8

6

5

3

6

1

Fill: 17
Empty: 3

Fill: 20
Empty: 0

Fill: 8
Empty: 12

3

2

2

First Fit Ascending
(FFA)

Fig. 3: An Offline First Fit Ascending heuristic

Various variants of heuristics have been applied which

includes first fit, next fit, best fit, first fit decreasing etc. to

mention a few. Items are packed into the bin in such a way

that the item are packed with minimum number of bins.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

40

Table 2: Types of Bin Packing Problems

Types Static Dynamic

Online 1D 1D

2D 2D

Strip Packing Strip Packing

Offline 1D 1D

2D 2D

Strip Packing Strip Packing

2.1 Bin Packing Problem as an Optimisation

Problem

NP-hard problems are usually solved using heuristics

algorithms which try to reach an optimal solution, or at least a

solution as close as possible to one optimal in a reasonable

time. The bin packing problem determines if the weight in a

list L of items can be packed into an integer D, referring to the

number of bins of capacity C. This problem is NP-complete if it

is proposed as a decision problem. However, as an optimisation

problem the problem reduces to NP-hard. A viable way of

solving the problem is to find an approximate optimal solutions

for the bin packing problem in polynomial time. The bin

packing theorem states thus [11]:

Given: a finite number of n items to be placed in bins

of capacity C each.

Item: Each item i has x units of size.

The objective functions are: 1) minimize the number of bins

required to pack all the n objects and 2) maximize the number

of empty spaces left after all n objects have been

accommodated.

3. MODEL DEVELOPMENT
For this research work items which have different weights are

packed at point of arrival into the bin. Using the bin packing

algorithms item are allocated to resources using both the online

and the offline bin packing heuristics. Results obtained are

evaluated using the fill function for both the online and offline

algorithms. VBA and Excel were used to implement the

algorithms.

3.1 The “Fill” Function
The most obvious objective function for this problem is the

number of items used by the solution, but it does not create

smooth search space for optimisation [13]. To make search

space smooth, function that takes the fill of bins in the solution

into account is used and it looks like this:

 Eq. 2

f p: Fill function, n: number of bins, fi: fill of the ith bin, c:

capacity of the bin, k: constant greater than 1.

3.2 Model Development for the Passenger

Bus Loading Problem
In this project, a bin packing algorithm is used to develop

efficient solution for passenger bus loading system to reduce

wastes of available bus spaces across the fleet.

For instance, Table 3 shows 188 passengers loaded into certain

number of 25-seater buses. The number 25 (0) denotes 25

passengers are loaded into a 25-seater bus leaving 0 empty

space. From the table, Loading 1 and Loading 3 leave 12 spaces

each. Loading 1 is more efficient than Loading 3 whose empty

spaces have been fragmented. However, the two loadings 1 and

3 are more efficient than Loading 2 which used additional bus

making a total of 9 buses instead of 8.

In bin packing, there are a number of bins with certain capacity,

where the task required is to arrange objects of various sizes

into the bins. In this case, the idea is not only to use the least

possible number of buses but also to maximize the number of

empty seats across the fleet. In a more complicated instance,

there can be a group of passengers (e.g. 2, 3, or 5 etc.) who

want to be in the same bus for certain reasons, that is, there may

be a number of tour groups of various sizes, which needs to be

accommodated all with the fewest number of empty seats

across the fleet. In this case, the first step here may be to

develop an exhaustive search tree by using every possible

combinations of passenger groups and increasing the number of

buses until there remains no more passengers to load.

Table 3: Example of 188 passengers loaded into 25-seater

buses

BUS Loading 1 Loading 2 Loading 3

1 25 (0) 25 (0) 25 (0)

2 25 (0) 23 (2) 24 (1)

3 25 (0) 19 (6) 23 (2)

4 25 (0) 19 (6) 23 (2)

5 25 (0) 17 (8) 23 (2)

6 25 (0) 24 (1) 23 (2)

7 24 (1) 23 (2) 24 (1)

8 14 (11) 22 (3) 23 (2)

9

16 (9)

 188 (12) 188 (37) 188 (12)

For the online algorithm, a group of passengers or at least an

individual arrives at a station at random. Passengers or group of

passengers are loaded on the bus in the FCFS order of arrival.

Each algorithm i.e. FF, NF, BF, WF is implemented to load

item groups into the buses such that the first arrived individual

or group is loaded into the first bus and so on. The following

assumptions are given for the implementation:

 Each bus has a maximum capacity C to load passengers.

No further loading is allowed when the bus is filled up.

 The number of available buses is limitless.

 Passengers can exist as an individual or as a group of

people. The number of passengers within a group is

represented by the integer value of passenger loaded on

the bus.

 The number of individual passenger within a group

cannot be greater than C.

 The total number of all the passengers is greater than the

capacity C of the bus.

 Passengers cannot be relocated once they have been

allocated to a bus (repacking is restricted).

 There is no specific order of selecting a bus. All buses

have the same capacity and thus any bus can be selected

at random.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

41

The four online algorithms are implemented with increasing

bus capacities. The objective (fill) function is calculated for

each online algorithm to know which bus has the highest

unused space evenly distributed across the buses. The algorithm

with the highest unused space is considered the best. Similar

implementations were adopted for the offline versions: FFA,

FFD, NFA, NFD, BFA, BFD, WFA, and WFD as shown in

Table 2.

3.3 Model Development for the

Multiprocessor Scheduling Problem
Multiprocessor scheduling (or minimum makespan scheduling)

problem is a scheduling problem in computer science and

operations research in which several tasks having different

length of processing are scheduled on a multiprocessor such

that the finishing time of the last task (also called makespan) is

minimized. In this problem, m identical processors P1…, Pm

and n tasks T1, J2, Tn are given. Task Ti has a processing time ti

≥ 0 and the goal is to assign tasks to the processors so as to

minimize the total makespan. The problem of study here

considers the non-pre-emptive scheduling for FCFS, SJF and

LJF using a single central queue.

Listing 1: A greedy algorithm for the online multiprocessor

scheduling problem [1]:

We give the following assumptions for the implementation:

 Each processor has an unlimited processing capacity C to

execute the tasks. Continuous loading on the processor is

possible as long as there are availability of tasks to be

scheduled.

 The number of available processors is limitless.

 Tasks are independent of one another.

 There is no processor idle time or wait time.

 The total number of all the tasks is greater than the

number of processors ().

 Tasks cannot be relocated once they have been allocated

to any processor (i.e. no migration).

 The order of scheduling of tasks follows the operating

systems scheduling disciplines.

 The order of scheduling of processors follows the bin

packing heuristics. All processors are identical and

homogeneous and thus any one can be selected with a

desired algorithm.

3.3.1 The Objective Function
The scheduling assignments for the multiprocessor scheduling

problem are in two stages: Task scheduling (allocation of tasks

to processor and Processor scheduling (allocation of processor

for scheduled tasks).

3.3.2. Task scheduling
Task schedule is a process that decides which task is next to be

scheduled on the processor. A schedule of this nature naturally

follows the disciplines in the operating system schedule of task

of processors viz: the First-Come-First-Serve (FCFS), Shortest

Job First (SJF), Shortest Time Remaining First (STRF), Round

Robing (RR), Priority (P) etc. [14]. For the purpose of this

study, three of these policies considered: FCFS, SJF and LPT.

3.3.2.1 First-Come-First-Serve (FCFS): The FCFS

schedules tasks in the order of arrival into the ready queue of

operating system. This is likened to the online algorithm such

that the order of arrangement of tasks is not known a priori. The

FCFS task is defined by:

 Eq. 3

3.3.2.2 Shortest Job First (SJF): SJF is a non-pre-

emptive scheduling in which tasks with the shortest execution

tasks are scheduled before tasks with longer executing tasks.

The SJF task is defined by:

 Eq. 4

3.3.2.3 Longest Processing Time (LPT): LPT sorts n

tasks in descending order of processing time. It is a non-pre-

emptive scheduling algorithm. The LPT task is defined by:

 Eq. 5

3.3.3 Processor scheduling
Processor schedule is a process that decides on which processor

a scheduled task should run. The objective is to simply

minimize the latest finishing time. The minimal processing

time solution will have the cost:

where k = processor scheduling policy, j = task, O = overhead

of task migration (if any), and h = the number of migration per

task.

According to our methodology from Eq. 2, the total makespan

for this scheduling assignment is given in Eq. 7.

 Eq. 7

For the evaluation criteria, it is more desirable to find the

minimum or maximum values of turnaround time, throughput,

and efficiency rather than their averages.

3.3.3.1 Turnaround Time: is the average time elapsed

from when the first task is scheduled to the time it completed.

This is the same as the makespan.

3.3.3.2 Throughput: In this context, throughput is defined

as the number of tasks completed in a time unit. This is the

same as the number of tasks over the total

. Eq. 8

3.3.3.3 CPU Efficiency: the efficiency of scheduling in

this study relates to the proportion of unused space to the total

maximum allocated space. Ideally, the efficiency is calculated

thus:

 Eq. 9

Algorithm 1: Order (list) the tasks arbitrarily

For i = 1 to n do

Assign task Ti to the machine with least current load

Update load of the machine that receives task Ti

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

42

4. RESULTS
Results of implementation show an overlap between FF and BF

algorithms as the bin capacity increases. In Figure 5 each online

algorithm was compared with its offline ascending and

descending versions. From the results both FF and BF show

better performance over NF and WF at low bin capacities <=

50 but the performances of NF and WF got better as the bin

capacity increases.

For large bus capacities, the performance of NF and WF get

better than for FF and BF. The FFA and FFD had their

performances improved as the bin size increases. However,

WFA got better than WFD for large bus capacities. Similar

results were obtained for ascending and descending offline

algorithms for FF, BF, NF are shown in Figure 1.

(a) First-Fit

(b) Next-Fit

(c) Best-Fit

(d) Worst-Fit

Fig. 4: Fill function of online bin-packing algorithms for

Bus Capacity = 30. (Lower is better)

Table 4: 1-f(x) function values of passenger bus loading

problem for Bus Capacity = 30. (Higher is better)

Algorithm

Online

Offline

Ascending Descending

First Fit 0.139365 0.1943 0.1327

Next Fit 0.193 0.194 0.186

Best Fit 0.139365 0.194286 0.132698

Worst Fit 0.190794 0.194286 0.175873

Fig. 5: Fill function of online heuristics with increasing bus

capacities

Fig. 6: Fill function of online heuristics with increasing

number of buses

Fig. 7: Fill function of online and offline heuristics for Bus

Capacity = 30. (Higher is better)

Table 5: Turnaround time, throughput and relative

efficiencies for FCFS, SJF and LPT of a multiprocessor

scheduling problem

Scheduling

Algorithm

Allocation

Heuristic

SRT

FFA 6.02 33.33 0.10

NFA 5.64 33.33 0.10

BFA 6.02 33.33 0.10

WFA 5.64 33.33 0.10

MIN 5.64 33.33

FCFS

FF 5.64 33.33 0.04

NF 5.64 31.23 0.10

BF 5.64 33.33 0.04

WF 5.64 31.23 0.10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2 4 6 8 10 12 14

FF NF BF WF

0

0.05

0.1

0.15

0.2

0.25

FF NF BF WF

Ascending Normal Descending

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

43

MIN 5.64 31.23

LPT

FFD 6.07 30.97 0.031

NFD 5.70 33.01 0.091

BFD 6.07 30.97 0.031

WFD 5.77 32.59 0.079

MIN 5.70 30.97

Results in Table 5 show the turnaround time, the throughput

and the efficiency of multiprocessor scheduling policies for

FCFS, SJF, and LPT under the assumptions considered above.

Experimental results show that the Next Fit algorithm and its

variants are better than other algorithms: NF algorithm

performs better in FCFS; NFA is better for SJF while NFD

leads in the case of LPT.

Fig. 8: Turnaround time, throughput and relative

efficiencies for SJF

Fig. 9: Turnaround time, throughput and relative

efficiencies for FCFS

Fig. 10: Turnaround time, throughput and relative

efficiencies for LPT

5. RELATED WORK
Quite a number of research has been carried into the application

of bin packing problem. Reviews of related work was made and
reported in this research work.

Corcoran A. L, Wainwright R. L. [8] developed a genetic

algorithms LibGA to solve combinatorial optimization

problems. The authors used bin packing Next Fit heuristic to

obtain evaluation function for the genetic algorithm solution. A

multiprocessor scheduler was discussed and implemented using

Job Shop scheduling algorithm but not with bin packing

method. The work proposed the possibility of achieving

efficient scheduling of jobs on multiprocessor but it was neither

treated nor implemented.

The work of Zapata, O. U. P., & Alvarez, P. M. [15]

implemented a real-time scheduling algorithms to assign pre-

emptible tasks to multiple processors. The bin packing

algorithms were combined with real time multiprocessor

scheduling policies, Rate Monotonic (RM) and Earliest

Deadline First (EDF) scheduling policies which are different

from the policies considered in this study.

6. CONCLUSION
The project work considered methods of evaluating the offline

and online variants of bin packing problem using heuristics for

deploying minimum objective function. Efficient packing of

items is viewed as a tool for maximizing the utilization of the

bins used. We considered bin packing problem and its

applications to passenger bus loading and multiprocessor

scheduling problems using fill function. Minimization of

available resources and makespan for passenger bus loading

problem and multiprocessor scheduler were implemented and

then evaluated. The results obtained for passenger bus loading

problem can be adapted to container or transportation loading

system where minimum resources are required. Maximization

of throughput and efficiency (as the case may be) for packing

items into bin using this heuristics was considered.

In our proposed studies, we shall adopt this methodology for

multi-objective minimization of complex problems for urban

transit which addresses vehicles with different capacities and

different amounts of fuel such that consideration for costs and

profits are necessary. Similar approach to the one implemented

for multiprocessor scheduling can be extended for thread

scheduling in multicore CPUs. The proposed study will

implement efficient scheduler for improved performance and

lower energy consumption for multicore processors.

7. REFERENCES
[1] Albers, S., Charikar, M., & Mitzenmacher, M. 1998.

Delayed information and action in on-line algorithms. In

Foundations of Computer Science, November 1998.

Proceedings. 39th Annual Symposium on (pp. 71-80).

IEEE.

[2] Alvim, A. C. F., Ribeiro, C. C., Glover F. and Aloise, D. J.

2004. A Hybrid Improvement Heuristic for the One-

Dimensional Bin Packing Problem, Journal of Heuristics,

Vol. 10, No. 2, 205-229.

[3] American Mathematical Society 2010. Feature Column

from the AMS

http://paginas.fe.up.pt/~mac/ensino/docs/DS20102011/Bin

_Packing.pdf.

[4] Ayachi, I., Kammarti, R., Ksouri, M., & Borne, P. 2013. A

Genetic algorithm to solve the container storage space

allocation problem. arXiv preprint arXiv:1303.1051.

[5] Bansal, N., Caprara, A., & Sviridenko, M. 2009. A new

approximation method for set covering problems, with

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 2 – No.8, September 2015 – www.caeaccess.org

44

applications to multidimensional bin packing. SIAM

Journal on Computing, 39(4), 1256-1278.

[6] Coffman E. G, Galambos G, Martello S. & Vigo D. 1998.

Bin packing approximation algorithms: Combinatorial

analysis, pp. 151–208 in Du D-Z & Pardalos PM (Eds),

Handbook of combinatorial optimization, Kluwer

Academic Publishers, Boston MA.

[7] Coffman E. G, Garey. M. R. & Johnson, D. S. 1978. An

Application of Bin-Packing to Multiprocessor Scheduling..

SIAM J. Comput., 7, 1-17.

[8] Corcoran A. L, Wainwright R. L. 1995. Using LibGA to

Develop Genetic Algorithms for Solving Combinatorial

Optimization Problems. Published in The Application

Handbook of Genetic Algorithms, Volume I, Lance

Chambers, editor, pages 143-172, CRC Press, 1995.

[9] Fleszar, K., and Hindi K. S., 2002. New heuristics for one-

dimensional bin packing, Computers and Operations

Research, Volume 29, Issue 7, pp. 821-839.glewood.

Cliffs, N.J.

[10] Francq P. 2012. Optimization Problems. January, 2012

http://www.otlet-

institute.org/wikics/Optimization_Problems.html

[11] Garey M. R. and Johnson D. S. 1979. Computer and

Intractability: A guide to the Theory of NP-Completeness

by Publisher: W. H. Freeman 1979.

[12] Gupta, J. N. D., and J. C. Ho. 1999. A new heuristic

algorithm for the one-dimensional bin-packing problem,

Production Planning and Control, Volume 10, Issue 6, pp.

598-603.

[13] Janković M., 2013. Genetic Algorithm for Bin Packing

Problem. http://www.codeproject.com/Articles/633133/g

[14] Silberschatz A., Gagne G., and Galvin P. B. 2008,

"Operating System Concepts, Eighth Edition ". John

Wiley & Sons. July 2008. ISBN: 9780470128725.

[15] Zapata, O. U. P., & Alvarez, P. M. 2005. EDF and RM

multiprocessor scheduling algorithms: Survey and

performance evaluation. Seccion de Computacion Av.

IPN, 2508.

