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ABSTRACT 

Security strength of RSA Cryptography is an enormous 

mathematical integer factorization problem. Deducing the 

private key‘d’ from its equation e. d ≡ (1 mod ψ) where ψ = 

(p-1). (q-1), £ n Є I+, such that n = p. q; is a world wide 

effort. This paper introduced very significant integer factoring 

algorithms such as trial division, ρ- method, ECM, and NFS 

and effort to factor RSA-150 composite number ‘n’ of 512 

bits by using NFS. It is found that the 512 bit RSA number 

may be believed to safe from the intruder. However, this 

system is slow for large volume of data. The computation of c 

≡ me mod n required O ((size e )(size n )* (size n)) and space 

O(size e + size n). Similarly, decryption process also has 

required O ((size d) (size n) * (size n)) and space O (size d + 

size n). Java ‘BigInteger’ class is introduced to overcome this 

shortcoming and successfully applied is presented through 

this paper.   
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1. INTRODUCTION 
Cryptology (from the Greek kryptós lógos, meaning ``hidden 

word'') is the discipline of cryptography and cryptanalysis 

combined. To most people, cryptography is concerned with 

keeping communications private. Indeed, the protection of 

sensitive communications has been the stress of cryptography 

throughout much of its history [1]. Cryptography has two 

phases’ encryption and decryption.  

Encryption is the transformation of data into a form that is as 

close to impossible as possible to read without the suitable 

knowledge (a key). Its reason is to ensure privacy by keeping 

information hidden from anyone for whom it is not proposed, 

even those who have access to the encrypted data. Decryption 

is the reverse of encryption; it is the transformation of 

encrypted data back into an original form. Encryption and 

decryption generally require the use of some secret 

information, referred to as a key. For some encryption 

mechanisms, the same key is used for both encryption and; for 

other method, the keys used for encryption and decryption is 

different. There are two types of cryptosystems: secret-key 

and public-key cryptography. In secret-key cryptography, also 

referred to as symmetric cryptography, the same key is used 

for both encryption and decryption. The most popular secret-

key cryptosystem in use today is the Data Encryption 

Standard (DES). In public-key cryptography, each user has a 

public key and a private key. The public key is made public 

while the private key remains secret. Encryption is performed 

with the public key while decryption is done with the private 

key. The RSA public-key cryptosystem is the most popular 

form of public-key cryptography. RSA stands for Rivest, 

Shamir, and Adleman, the inventors of the RSA cryptosystem. 

The Digital Signature Algorithm (DSA) is also a popular 

public-key technique, though it can only be used only for 

signatures, not encryption. Elliptic curve cryptosystems 

(ECCs) are cryptosystems based on mathematical objects 

known as elliptic curves. Elliptic curve cryptography has been 

gaining in popularity recently. Lastly, the Diffie-Hellman key 

agreement protocol is a popular public-key technique for 

establishing secret keys over an insecure channel [2]. 

Surveys by Rivest [3] and Brassard [4, 5] form an excellent 

introduction to modern cryptography. Some textbook 

treatments are provided by Stinson [6] and Stallings [7], while 

Simmons provides an in-depth coverage of the technical 

aspects of cryptography [8]. A comprehensive review of 

modern cryptography can also be found in Applied 

Cryptography [9]; Ford [10] provided detailed coverage of 

issues such as cryptography standards and secures 

communication.  

This paper explained one of the most important public key 

cryptography called RSA cryptography and its practical 

execution by using Java in the following sections intended to 

provide more practical observation of this cryptosystem for 

the reader. Theoretical concept of RSA cryptography, 

example of RSA-1024 cryptography, its implementation 

RSA-1024 cryptography using java, security strength, 

shortcoming, research scope, and finally conclusions have 

been discussed. 

1.1 RSA Cryptography 
The RSA cryptosystem is a public-key cryptosystem that 

offers both encryption and digital signatures (authentication). 

Ronald Rivest, Adi Shamir, and Leonard Adleman developed 

the RSA system in 1977 [11]; RSA stands for the first letter in 

each of its inventors' last names. Its security is based on the 

intractability of the integer factorization on the problem [1, 2] 

will be discussed in this chapter afterward sections. In RSA 

algorithm encryption and decryption process is depicted in the 

following Fig.1 (a,b, & c) and its processes is explained in the 

following section.  

To generate public key encryption RSA algorithm selects two 

large prime numbers p,q such that n=p. q and ψ = (p –1). (q –

1), and £ e Є I+, 1<e< ψ, such that gcd (e, ψ) = 1. After that 

algorithm used Euclidean algorithm to compute the unique 

integer d, 1<d< ψ, such that e. d ≡ (1 mod ψ). Through that £ 

public key (n, e) and private key is d. these e and d is RSA 

key generation are called the encryption exponent and the 
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decryption exponent respectively, while n is called the 

modulus. 

To send message (m), where m Є I+, £ m Є [0, n – 1] interval, 

compute cipher text c ≡ me (mod n) at sender end this task is 

known as encryption. At the receiver and again compute c d 

(mod n) ≡ m to get the original message (m), this task is 

known as decryption. To proof decryption task, since e. d ≡ 

1(mod ψ), £ k Є I such that e. d = 1 + k ψ. Now if gcd (m, p) 

= 1 then by Format’s theorem mp-1 = mod p. Raising both 

side of this congruence to the power of k(q-1) and then 

multiplying both side by m yields  

 

m1+k (p-1)(q-1) = m (mod p) 

 

On the other hand, if gcd(m,p) = p, then this last congruence 

is again valid since each side congruence to 0 modulo p.  

Hence in all cases  

med ≡ m( mod p) 

By same argument med ≡ m(mod q). Finally, since q and q are 

distinct primes, it follows that (me)d  ≡m (mod n); and hence  

ed ≡ (me)d ≡ m (mod n). 

 

Fig. 1. RSA Cryptography 

 

Fig. 2. Multi-client Server RSA Cryptography System 

Here, single client is connected with the server. In general, for 

all computer network applications, often multiple clients are 

connected with sever. For multiple client server applications, 

it is noted that server computes unique public as well as 

private key for each connected clients as depicted in Fig. 2.  It 

shows how server will send unique public key for each 

connected clients and maintain unique private key for each 

client as well. At this juncture, three clients are connected 

with the server is shown. Server will generate three set of 

public and private key for each connected clients. It is cleared 

that, each client have their own pair of key for the secure 

communication. This feature produces security potency of the 

system as well. In the subsequent sections of the chapter, 

detail design and Java code of RSA-1024 cryptography 

system over a multi-client server network is discussed. 

Readers of this book may use this code and exhibit the system 

in their machine or LAN. In the next section, an example of 

RSA-1024 cryptography is explained. 

1.2 Paradigm of RSA -1024 Cryptography 
 

RSA-1024 has 1,024 bits (309 decimal digits) have following 

steps in the server as well as client side. 

 
Step-I: Server randomly generates 

two large prime number say p and q like - 

 

p = 

19723548993819989754922565271561472

94395422515733970967431625499248959

91307983563222686430053692168812384

84911627627177620887034862330061284

3029900414459 

q = 

31390070755831755004012405854969206

97142967178123204474484712102553171

92427751191891281347184368895910516

45832273346080086600307934802998541

1066089762133937 

Step-II: Server computes n = p.q (called 

RSA Modulus ‘n’ is a 1024 

bits number has 309 decimal 

digits)   

n = 

61912359847212369671288806246260138

12212052387289151652664227575355377

71531495613333037401658612544833474

00619314792687346296536446518008009

38861490432161507645110125287810122

82211662158055141882953539502644281

80250806507668549402775952254344988

55114665852970853971989413138402658

2757627117281192440569395083 

 

Step-III: Server computes ψ = (p –1). (q 

–1) 

 

Ψ = 

61912359847212369671288806246260138

12212052387289151652664227575355377

71531495613333037401658612544833474

00619314792687346296536446518008009

38861490432130097850805299712816355

49369638081210704520352900564198829

65878001265580130343600497750311374

12855857920086536787015705874181463

3060973831257283320906846688 

 

Step-IV: Server computes ‘d’ by relation 

d ≡ 1(mod ψ) 

d = 
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41274906564808246447525870830840092

08141368258192767768442818383570251

81020997075555358267772408363222316

00412876528458230864357631012005339

59240993621420065233870199808544236

99579758720807136346901933709465886

43918667510386753562400331833540916

08570571946724357858010470582787642

2040649220838188880604564459 

 

Step IV: Sets public key (e, n) like (3, 

n) and privet key (d, n) 

 

Step V:  Sends (e, n) to the client for 

encryption and maintains (d, n) 

for decryption.  

 

Now consider following plaintext is to be 

sent from the client 

 

Dear Aditya 

RSA cryptosystem is 

based on Integer 

factorization problem 

thus produced high 

security however slow 

for large data. 

Pradeep, K.,  

 

Then message (m) can represent as big 

integer form  

m =  

19758115125724582576198000160674597

12583016966761746032370057093722430

51963748277169849190956858887451547

43642907299950510449042848568217693

32249140945779889887852065883208320

23348848960325963245453068018865124

07734093472769434986087213624552834

22288542914198429475157302869360615

56047504052969154914494631198585824

01904052641802207209205519206867694

002804666686723796524  

 

Encryption- Client computes cipher 

text(C=me mod n) and sends to the server: 

 

(1975811512572458257619800016067459

71258301696676174603237005709372243

05196374827716984919095685888745154

74364290729995051044904284856821769

33224914094577988988785206588320832

02334884896032596324545306801886512

40773409347276943498608721362455283

42228854291419842947515730286936061

55604750405296915491449463119858582

40190405264180220720920551920686769

4002804666686723796524)
3
 mod 

(6191235984721236967128880624626013

81221205238728915165266422757535537

77153149561333303740165861254483347

40061931479268734629653644651800800

93886149043216150764511012528781012

28221166215805514188295353950264428

18025080650766854940277595225434498

85511466585297085397198941313840265

82757627117281192440569395083 

= 

44326296821353505391897989919853592

62047511266314161727099616609282580

27246426386714426724099435622357224

30512750635517157672727259076937736

45082205223910300016772518791028648

44076863964179858259819887729695550

99915036539903477778404270933912857

45188389337258374685111141236226317

04324047269764743641754473 

 

Decryption –Server computes original 

message (m) by using (m= Cdmod n) as 

 

(4432629682135350539189798991985359

26204751126631416172709961660928258

02724642638671442672409943562235722

43051275063551715767272725907693773

64508220522391030001677251879102864

84407686396417985825981988772969555

09991503653990347777840427093391285

74518838933725837468511114123622631

704324047269764743641754473)
4127490656

4808246447525870830840092081413682581927677684428183

8357025181020997075555358267772408363222316004128765

2845823086435763101200533959240993621420065233870199

8085442369957975872080713634690193370946588643918667

5103867535624003318335409160857057194672435785801047

05827876422040649220838188880604564459 
 mod 

(6191235984721236967128880624626013

81221205238728915165266422757535537

77153149561333303740165861254483347

40061931479268734629653644651800800

93886149043216150764511012528781012

28221166215805514188295353950264428

18025080650766854940277595225434498

85511466585297085397198941313840265

82757627117281192440569395083) 

= 

19758115125724582576198000160674597125830

16966761746032370057093722430519637482771

69849190956858887451547436429072999505104

49042848568217693322491409457798898878520

65883208320233488489603259632454530680188

65124077340934727694349860872136245528342

22885429141984294751573028693606155604750

40529691549144946311985858240190405264180

22072092055192068676940028046666867237965

24. 

2. IMPLEMENTATION OF RSA-1024 BY 

USING JAVA 
Java BigInteger provided analogues to all of Java's primitive 

integer operators, and all relevant methods from 

java.lang.Math. Additionally, BigInteger provides operations 

for modular arithmetic, GCD calculation, primality testing, 

prime generation, bit manipulation, and a few other 

miscellaneous operations. Modular arithmetic operations are 

provided to compute residues, perform exponentiation, and 

compute multiplicative inverses. It has been found the 

implementation of RSA algorithm can be easily obtained from 

following code segment. Detail of implementation procedure 

as well as code is given in the subsequent sections of this 

chapter.  
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int size1 = size/2; 

int size2 = size1; 

int offset1 = 

(int)(5.0*(rnd.nextDouble()) + 

5.0); 

 int offset2 = -offset1; 

 if (rnd.nextDouble() < 0.5) { 

offset1 = -offset1; offset2 = -

offset2;} 

size1 += offset1; size2 += offset2; 

/* generate two random primes, so 

that p*q = n has size bits */ 

BigInteger p1= new 

BigInteger(size1, rnd);  

// random int 

p= nextPrime(p1); 

BigInteger pM1= 

p.subtract(BigInteger.ONE); 

BigInteger q1 = new 

BigInteger(size2, rnd); 

q= nextPrime(q1); 

BigInteger qM1= 

q.subtract(BigInteger.ONE); 

n= p.multiply(q); 

BigInteger phiN= pM1.multiply(qM1);  

// (p-1)*(q-1) 

BigInteger e= THREE; 

d= e.modInverse(phiN); 

 

Where rnd is random number is obtained by Random class 

which is defined in java.util package. And next prime is 

obtained from following piece of code.  
 

public BigInteger 

nextPrime(BigInteger x)  

{ 

if 

((x.remainder(TWO)).equals(BigInteg

er.ZERO)) 

x = x.add(BigInteger.ONE); 

while(true)  

{ 

BigInteger xM1 = x.subtract 

(BigInteger.ONE); 

if 

(!(xM1.remainder(THREE)).equals(Big

Integer.ZERO)) 

if (x.isProbablePrime(10)) break; 

x = x.add(TWO); 

} 

return x; 

} 

} 

 

Encryption and Decryption is obtained from following code 

segment 

 
public BigInteger RSADecrypt(BigInteger 

c)  

{ 

       return c.modPow(d, n); 

} 

public BigInteger RSAEncrypt(BigInteger 

c)  

{ 

       return m.modPow(e, n); 

} 

3. SECURITY STRENGTH OF RSA 

CRYPTOGRAPHY 
Security strength of RSA is enormous mathematical integer 

factorization problem. Deducing the private key ‘d’ from its 

equation e. d ≡ (1 mod ψ) where ψ = (p-1). (q-1), £ n Є I+, 

such that n = p. q (p and q is large distinct prime number) is a 

world wide effort.  It required more processing power along 

with storage. This paper introduced significant integer 

factoring algorithms number field sieve (NFS) and its effort to 

factor while The RSA-150 (512 bit) composite number ‘n’ 

have been considered. Other significant mathematical 

methods/algorithm also has been discussed for assessment 

through survey of Mathematical Review 94-2008A60. It has 

been found that the 512 bit RSA number may be believed to 

safe from the intruder.  

4. POSSIBLE ATTACK ON RSA 
If the advisory is able to factor the public modulus ‘n’ of same 

entity A, then the adversary can compute ψ and then, using 

Extended Euclidean algorithm deduce the private key d from 

ψ and the public exponent ‘e’ by solving ed ≡ 1(mod ψ). This 

constitutes a total break of the system. To guard against this, 

A must set p and q so that factoring ‘n’ is a computationally 

infeasible task [12]. 

4.1 Methodology 
One of the importation applications of integer factorization is 

RSA public key cryptosystem. The security of cryptosystem 

depends on the intractability of factoring integers [13]. The 

integer factorization is one of the problems that have been 

long considered in the world of the number theory [12]. In the 

last few decades, together with the rapid progress of computer 

technology, methods for factoring integers efficiently were 

studied, and as a result some algorithms were invented 

through review. The major methodology or algorithm through 

which‘d’ can deduce from ed ≡ 1(mod ψ), if we capable to 

factor n. In fact it is strength of RSA security; nobody can say 

which algorithm is best for factor ‘n’ on the word of 

computational complexity.  

Dixon’s method based on finding a congruence of squares. 

Format’s factorization algorithm finds such congruence by 

selecting random or pseudo-random x value and hoping, one 

satisfied the congruence. X2 ≡ y2 (mod n); X = + Y; values 

will take an impractically long time to find a congruence of 

squares. In Pollard’s (ρ-1) algorithm meaning that it is only 

suitable for integers with specific types of factors. The 

algorithm is based on the insight that number of the form (ab-

1) tends to be highly composite when b is itself composite. 

Since it is computationally simple to evaluate number of this 

form in modular arithmetic, the algorithm allows one to quick 

check many potential factors with greatest efficiency. In 

particular the method will find a factor ρ if b is divisible by ρ -

1. When ρ -1 is smooth (the product of only small integer) 

then this algorithm is well suited to discovering the factors. 

The trial division is the simplest and easiest to understand of 

the integer factorization algorithm. Given a composite integer 

n, trial division consists of trial dividing n by every prime 

number less than or equal to √n. If a number is found which 

divides evenly into n, a factor of n has been found. Trail 

division is guaranteed, to find a factor of n, since it checks all 

possible prime factors of ‘n’. Then if the algorithm is fail, it is 

proof. That n is prime. In worst case, trial division is very 
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inefficient algorithm. It starts from 2 and work up to the √n2 , 

the algorithm requires  (л√n) trial divisions, where  л (x) is the 

number of primes less than x. 

NFS (Number field sieve) algorithm uses four main steps; 

polynomial selection, sieving, linear algebra and square root. 

In polynomial section step two irreducible polynomial f1(x) 

and f2(x) which are commonly root m (mod N) selected 

having as many as practically possible smooth values over 

given factor base. In the sieving steps, which is by far the 

most time consuming steps of NFS pair (a,b) are found with 

gcd (a,b) =1 such that both 

 

bdeg(f1) f1(a/b) &  bdeg (f2) f2(a/b) 
 

Are smooth over given factor base i.e., factor completely over 

the factor bases. Such a pair (a,b) called relation. The purpose 

of this step is to collect so many relations that several subsets 

S of them can be found with the property that a product taken 

S yield on expression of the form X2 = Y2 (mod N) for 

approximately half of these subsets, computing gcd (X-Y, N) 

yields a non-trial factor of N (if N has exactly to distinct 

factors). We only discussed sieving steps in NFS here [14-16]. 

ECM (Elliptical curve method) by Lenstra,  and Takayuki  

[17,18] makes use of property of Groups (G) of points on the 

elliptic curve to find factor of composite number n. ECM can 

find relatively small factors (< 50 digits) of so lange integers 

that NFS cannot treat, because ECM does not have a 

limitations with respect to n. For this reason ECM is still an 

important technique for factorization at the present time 

[19,20]. Lenstra, [21], and since than various improvements 

has been worked out. The time complexity of some algorithm 

is dependent on the given composite number n, and that other 

is dependent on the smallest prime factor p of n. As per 

algorithms discussed above, the average (or worst time) 

complexity is shown below [21, 22]- 

 

NFS   : L n[1/3,1.901] 

Trial Division  : O(ρ) 

ρ method   : O(under root of ρ) 

ρ -1 method  : O(ρ’) 

ECM   : L p[1/2,1.414] 
 

Here(,ρ’ is the largest prime division of (ρ -1). Here the 

function Lx(1,c) defined as follows: 

Lx(1,c) = exp((c + O(1) (logx)I(log log x)I-1)) 

And an algorithm that has the time complexity Ln(I,c) for 

some c and I<1 (where, n is the input integer) is called a sub 

exponential time algorithm. Note that Ln[O,C] = O(log n)c 

(polynomial time) and Ln[1,c] = O(nc) (exponential time with 

respect to the input length log n) [21]. It is concluded that the 

best-known algorithm for factoring integer is NFS, 

asymptotically and practically for very large composite 

number (over 150 digits). The sieving phase that search fixed 

set of prime number for candidate that have a particular 

algebraic relationship, modulo the number to be factor. The 

sieving phase can be done in distributed fashion, on large 

number of processors simultaneously. The matrix-solving 

phase require large amount of storage space [23-25] The 

RSA-150 (512 bit) composite number ‘n’ have been 

considered for factor by assuming NFS algorithm wherein n = 

p q while for the sieving steps 200000 parallel Pentium-4 

microprocessors (2.53 GHz), FSB 53 MHz, Intel Desktop 

Motherboard D850EV2, i850 chip set, 1024 MB RAM, 

PC800, Free BSD were used [25]. 

n= 

15508981242834844050960675437001186

17706545458309954306554669457743126

32703463465954363335027577729025391

45399678471402700350163177218684089

0795964683 

After factor through NFS obtained  
p = 

34800986710228369548397045104759342

48310128173503854568895596375482781

0717 

q =  

44564774490364074153324112578708617

60054425362977661534934197245324602

96199 

The estimated sieving time to factor above RSA-150 (512 bit) 

composite number ‘n’ was 20597260 second, approximately 

of 239 days. This work supported by the CRIPTREC project 

is promoted by Telecommunication advancement organization 

of Japan. (mailto: macro@ntt.co.jp) [25]. Zimmermann, P., is 

a French computational mathematician, working at INRIA 

(The National Institute for Research in Computer Science and 

Control (French: Institut national de recherche en 

informatique et en automatique,INRIA). His interests include 

asymptotically-fast arithmetic — he wrote a book [26] on 

algorithms for computer arithmetic with Richard Brent. He 

has developed some of the fastest available code for 

manipulating polynomials over GF(2), and for calculating 

hyper geometric constants to billions of decimal places. He is 

presently associated with the CARAMEL project 

(http://caramel.loria.fr/members.en.html ) to develop efficient 

arithmetic, in a general context and in particular in the context 

of algebraic curves of small genus; arithmetic on polynomials 

of very large degree turns out to be useful in algorithms for 

point-counting on such curves. He factored RSA -704 on July 

2, 2012 [26].   The CARAMEL project-team has three main 

research themes [27]: 

1. The number field sieve algorithm and its siblings, 

for integer factorization and discrete logarithm in 

finite fields, 

2. Algebraic curves for cryptography, in particular 

genus 2 curves and pairings, 

3. Arithmetic in general, from integers to floating-

point numbers, in software and hardware. 

Thus, it is concluded that, even ‘n’ is obtainable by the 

intruder however, deducing the private key‘d’ from its 

equation e. d ≡ (1 mod ψ) where ψ = (p-1). (q-1), £ n Є I+, 

such that n = p. q (p and q is large distinct prime number) is 

almost complicated. Currently RSA modulus ‘n’ of size 1024 

bits is being used for all protocols/applications [28, 29].  

5. SHORTCOMING AND OVERCOME 

BY JAVA BIGINTEGER.  
It is observed that this system is quite slow for large volume 

of data. Foundation of this shortcoming is, in RSA public key 

‘e’ is an integer and message m Є{0,1,2,3,4…..n-1} to be 

encrypted therefore the computation  of “me mod n” required 

processing time O((size e )(size n )2) and space O(size e + size 

n). Similarly, cause of slow for large volume of data is again 

complexity occurred during the decryption process to 

compute original message from cipher text c. The complexity 

in the decryption process is O ((size d) (size n) 2). Means the 

computational complexity is directly proportional to the 
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multiplication of (size e) and (size n) 2 while ‘m’ is a large 

integer to be send. In other hand complexity is directly 

proportional to the multiplication of (size d) and (size n) 2 

during the decryption process while ‘c’ is a large integer. It 

may be 1024 bits or more. The time and space complexity of 

both the operations is given in the Tab. 1. This problem can 

solve by fast exponentiation algorithm [1]. Many researchers 

are used this algorithm to do so. However, it is found that, 

Java BigInteger provides analogues to all of Java's primitive 

integer operators, and all relevant methods as discussed in the 

section 1.3. The encryption and decryption is discussed as : 

 

return m.modPow(e, n); 

return c.modPow (d, n); 

This feature of Java is applied instead of fast exponentiation 

algorithm to overcome the shortcoming. 

Table 1. Complexity in RSA cryptography 

 

Process Time Space 

Encryption O((size e )(size n )2 O (size e + size n). 

Decryption O((size d )(size n )2 O (size d + size n). 

 

6. CONCLUSIONS 
RSA cryptosystem is presently used in a wide variety of 

products (TCP/IP, MIME, WAN, TELNET etc), platform 

(Apple, Sun, Novel, and Microsoft) around the world 

computer network for safely communication and 

transformation. This paper discussed the comprehensive view 

of the RSA cryptosystem, its straight, limitations, and various 

methods such as trial division, ρ- method, ECM, and NFS for 

breaking RSA system. It is found that RSA-1024 is absolutely 

secure from the intruder, however has introduced more 

computational complexity while increasing public key (e, n) 

and private key (d, n). As far as concern to solve this problem 

one can solve by fast exponentiation algorithms. However 

many researchers are often used these algorithm. It is found 

that, Java BigInteger provides analogues to all of Java's 

primitive integer operators, and all relevant methods. This 

feature of Java is successfully applied on the algorithm 

instead of fast exponentiation algorithm to overcome this 

shortcoming.  
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