

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

12

Contemporary RSA- 1024 Cryptosystem: A

Comprehensive Review Article

Sanjeev Karmakar

Bhilai Institute of Technology, Durg, Bhilai House,
491001, Chhattisgarh, India

Siddhartha Choubey
Shri Shankaracharya Technical Campus / Shri

Shankaracharya group of Institutions, Bhilai, Durg,
India

ABSTRACT

Security strength of RSA Cryptography is an enormous

mathematical integer factorization problem. Deducing the

private key‘d’ from its equation e. d ≡ (1 mod ψ) where ψ =

(p-1). (q-1), £ n Є I+, such that n = p. q; is a world wide

effort. This paper introduced very significant integer factoring

algorithms such as trial division, ρ- method, ECM, and NFS

and effort to factor RSA-150 composite number ‘n’ of 512

bits by using NFS. It is found that the 512 bit RSA number

may be believed to safe from the intruder. However, this

system is slow for large volume of data. The computation of c

≡ me mod n required O ((size e)(size n)* (size n)) and space

O(size e + size n). Similarly, decryption process also has

required O ((size d) (size n) * (size n)) and space O (size d +

size n). Java ‘BigInteger’ class is introduced to overcome this

shortcoming and successfully applied is presented through

this paper.

Keywords

RSA, RMI, Cryptography, Encryption, Decryption, Network,

Security, RSA-1024, NFS, ECM

1. INTRODUCTION
Cryptology (from the Greek kryptós lógos, meaning ``hidden

word'') is the discipline of cryptography and cryptanalysis

combined. To most people, cryptography is concerned with

keeping communications private. Indeed, the protection of

sensitive communications has been the stress of cryptography

throughout much of its history [1]. Cryptography has two

phases’ encryption and decryption.

Encryption is the transformation of data into a form that is as

close to impossible as possible to read without the suitable

knowledge (a key). Its reason is to ensure privacy by keeping

information hidden from anyone for whom it is not proposed,

even those who have access to the encrypted data. Decryption

is the reverse of encryption; it is the transformation of

encrypted data back into an original form. Encryption and

decryption generally require the use of some secret

information, referred to as a key. For some encryption

mechanisms, the same key is used for both encryption and; for

other method, the keys used for encryption and decryption is

different. There are two types of cryptosystems: secret-key

and public-key cryptography. In secret-key cryptography, also

referred to as symmetric cryptography, the same key is used

for both encryption and decryption. The most popular secret-

key cryptosystem in use today is the Data Encryption

Standard (DES). In public-key cryptography, each user has a

public key and a private key. The public key is made public

while the private key remains secret. Encryption is performed

with the public key while decryption is done with the private

key. The RSA public-key cryptosystem is the most popular

form of public-key cryptography. RSA stands for Rivest,

Shamir, and Adleman, the inventors of the RSA cryptosystem.

The Digital Signature Algorithm (DSA) is also a popular

public-key technique, though it can only be used only for

signatures, not encryption. Elliptic curve cryptosystems

(ECCs) are cryptosystems based on mathematical objects

known as elliptic curves. Elliptic curve cryptography has been

gaining in popularity recently. Lastly, the Diffie-Hellman key

agreement protocol is a popular public-key technique for

establishing secret keys over an insecure channel [2].

Surveys by Rivest [3] and Brassard [4, 5] form an excellent

introduction to modern cryptography. Some textbook

treatments are provided by Stinson [6] and Stallings [7], while

Simmons provides an in-depth coverage of the technical

aspects of cryptography [8]. A comprehensive review of

modern cryptography can also be found in Applied

Cryptography [9]; Ford [10] provided detailed coverage of

issues such as cryptography standards and secures

communication.

This paper explained one of the most important public key

cryptography called RSA cryptography and its practical

execution by using Java in the following sections intended to

provide more practical observation of this cryptosystem for

the reader. Theoretical concept of RSA cryptography,

example of RSA-1024 cryptography, its implementation

RSA-1024 cryptography using java, security strength,

shortcoming, research scope, and finally conclusions have

been discussed.

1.1 RSA Cryptography
The RSA cryptosystem is a public-key cryptosystem that

offers both encryption and digital signatures (authentication).

Ronald Rivest, Adi Shamir, and Leonard Adleman developed

the RSA system in 1977 [11]; RSA stands for the first letter in

each of its inventors' last names. Its security is based on the

intractability of the integer factorization on the problem [1, 2]

will be discussed in this chapter afterward sections. In RSA

algorithm encryption and decryption process is depicted in the

following Fig.1 (a,b, & c) and its processes is explained in the

following section.

To generate public key encryption RSA algorithm selects two

large prime numbers p,q such that n=p. q and ψ = (p –1). (q –

1), and £ e Є I+, 1<e< ψ, such that gcd (e, ψ) = 1. After that

algorithm used Euclidean algorithm to compute the unique

integer d, 1<d< ψ, such that e. d ≡ (1 mod ψ). Through that £

public key (n, e) and private key is d. these e and d is RSA

key generation are called the encryption exponent and the

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

13

decryption exponent respectively, while n is called the

modulus.

To send message (m), where m Є I+, £ m Є [0, n – 1] interval,

compute cipher text c ≡ me (mod n) at sender end this task is

known as encryption. At the receiver and again compute c d

(mod n) ≡ m to get the original message (m), this task is

known as decryption. To proof decryption task, since e. d ≡

1(mod ψ), £ k Є I such that e. d = 1 + k ψ. Now if gcd (m, p)

= 1 then by Format’s theorem mp-1 = mod p. Raising both

side of this congruence to the power of k(q-1) and then

multiplying both side by m yields

m1+k (p-1)(q-1) = m (mod p)

On the other hand, if gcd(m,p) = p, then this last congruence

is again valid since each side congruence to 0 modulo p.

Hence in all cases

med ≡ m(mod p)

By same argument med ≡ m(mod q). Finally, since q and q are

distinct primes, it follows that (me)d ≡m (mod n); and hence

ed ≡ (me)d ≡ m (mod n).

Fig. 1. RSA Cryptography

Fig. 2. Multi-client Server RSA Cryptography System

Here, single client is connected with the server. In general, for

all computer network applications, often multiple clients are

connected with sever. For multiple client server applications,

it is noted that server computes unique public as well as

private key for each connected clients as depicted in Fig. 2. It

shows how server will send unique public key for each

connected clients and maintain unique private key for each

client as well. At this juncture, three clients are connected

with the server is shown. Server will generate three set of

public and private key for each connected clients. It is cleared

that, each client have their own pair of key for the secure

communication. This feature produces security potency of the

system as well. In the subsequent sections of the chapter,

detail design and Java code of RSA-1024 cryptography

system over a multi-client server network is discussed.

Readers of this book may use this code and exhibit the system

in their machine or LAN. In the next section, an example of

RSA-1024 cryptography is explained.

1.2 Paradigm of RSA -1024 Cryptography

RSA-1024 has 1,024 bits (309 decimal digits) have following

steps in the server as well as client side.

Step-I: Server randomly generates

two large prime number say p and q like -

p =

19723548993819989754922565271561472

94395422515733970967431625499248959

91307983563222686430053692168812384

84911627627177620887034862330061284

3029900414459

q =

31390070755831755004012405854969206

97142967178123204474484712102553171

92427751191891281347184368895910516

45832273346080086600307934802998541

1066089762133937

Step-II: Server computes n = p.q (called

RSA Modulus ‘n’ is a 1024

bits number has 309 decimal

digits)

n =

61912359847212369671288806246260138

12212052387289151652664227575355377

71531495613333037401658612544833474

00619314792687346296536446518008009

38861490432161507645110125287810122

82211662158055141882953539502644281

80250806507668549402775952254344988

55114665852970853971989413138402658

2757627117281192440569395083

Step-III: Server computes ψ = (p –1). (q

–1)

Ψ =

61912359847212369671288806246260138

12212052387289151652664227575355377

71531495613333037401658612544833474

00619314792687346296536446518008009

38861490432130097850805299712816355

49369638081210704520352900564198829

65878001265580130343600497750311374

12855857920086536787015705874181463

3060973831257283320906846688

Step-IV: Server computes ‘d’ by relation

d ≡ 1(mod ψ)

d =

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

14

41274906564808246447525870830840092

08141368258192767768442818383570251

81020997075555358267772408363222316

00412876528458230864357631012005339

59240993621420065233870199808544236

99579758720807136346901933709465886

43918667510386753562400331833540916

08570571946724357858010470582787642

2040649220838188880604564459

Step IV: Sets public key (e, n) like (3,

n) and privet key (d, n)

Step V: Sends (e, n) to the client for

encryption and maintains (d, n)

for decryption.

Now consider following plaintext is to be

sent from the client

Dear Aditya

RSA cryptosystem is

based on Integer

factorization problem

thus produced high

security however slow

for large data.

Pradeep, K.,

Then message (m) can represent as big

integer form

m =

19758115125724582576198000160674597

12583016966761746032370057093722430

51963748277169849190956858887451547

43642907299950510449042848568217693

32249140945779889887852065883208320

23348848960325963245453068018865124

07734093472769434986087213624552834

22288542914198429475157302869360615

56047504052969154914494631198585824

01904052641802207209205519206867694

002804666686723796524

Encryption- Client computes cipher

text(C=me mod n) and sends to the server:

(1975811512572458257619800016067459

71258301696676174603237005709372243

05196374827716984919095685888745154

74364290729995051044904284856821769

33224914094577988988785206588320832

02334884896032596324545306801886512

40773409347276943498608721362455283

42228854291419842947515730286936061

55604750405296915491449463119858582

40190405264180220720920551920686769

4002804666686723796524)
3
 mod

(6191235984721236967128880624626013

81221205238728915165266422757535537

77153149561333303740165861254483347

40061931479268734629653644651800800

93886149043216150764511012528781012

28221166215805514188295353950264428

18025080650766854940277595225434498

85511466585297085397198941313840265

82757627117281192440569395083

=

44326296821353505391897989919853592

62047511266314161727099616609282580

27246426386714426724099435622357224

30512750635517157672727259076937736

45082205223910300016772518791028648

44076863964179858259819887729695550

99915036539903477778404270933912857

45188389337258374685111141236226317

04324047269764743641754473

Decryption –Server computes original

message (m) by using (m= Cdmod n) as

(4432629682135350539189798991985359

26204751126631416172709961660928258

02724642638671442672409943562235722

43051275063551715767272725907693773

64508220522391030001677251879102864

84407686396417985825981988772969555

09991503653990347777840427093391285

74518838933725837468511114123622631

704324047269764743641754473)
4127490656

4808246447525870830840092081413682581927677684428183

8357025181020997075555358267772408363222316004128765

2845823086435763101200533959240993621420065233870199

8085442369957975872080713634690193370946588643918667

5103867535624003318335409160857057194672435785801047

05827876422040649220838188880604564459
 mod

(6191235984721236967128880624626013

81221205238728915165266422757535537

77153149561333303740165861254483347

40061931479268734629653644651800800

93886149043216150764511012528781012

28221166215805514188295353950264428

18025080650766854940277595225434498

85511466585297085397198941313840265

82757627117281192440569395083)

=

19758115125724582576198000160674597125830

16966761746032370057093722430519637482771

69849190956858887451547436429072999505104

49042848568217693322491409457798898878520

65883208320233488489603259632454530680188

65124077340934727694349860872136245528342

22885429141984294751573028693606155604750

40529691549144946311985858240190405264180

22072092055192068676940028046666867237965

24.

2. IMPLEMENTATION OF RSA-1024 BY

USING JAVA
Java BigInteger provided analogues to all of Java's primitive

integer operators, and all relevant methods from

java.lang.Math. Additionally, BigInteger provides operations

for modular arithmetic, GCD calculation, primality testing,

prime generation, bit manipulation, and a few other

miscellaneous operations. Modular arithmetic operations are

provided to compute residues, perform exponentiation, and

compute multiplicative inverses. It has been found the

implementation of RSA algorithm can be easily obtained from

following code segment. Detail of implementation procedure

as well as code is given in the subsequent sections of this

chapter.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

15

int size1 = size/2;

int size2 = size1;

int offset1 =

(int)(5.0*(rnd.nextDouble()) +

5.0);

 int offset2 = -offset1;

 if (rnd.nextDouble() < 0.5) {

offset1 = -offset1; offset2 = -

offset2;}

size1 += offset1; size2 += offset2;

/* generate two random primes, so

that p*q = n has size bits */

BigInteger p1= new

BigInteger(size1, rnd);

// random int

p= nextPrime(p1);

BigInteger pM1=

p.subtract(BigInteger.ONE);

BigInteger q1 = new

BigInteger(size2, rnd);

q= nextPrime(q1);

BigInteger qM1=

q.subtract(BigInteger.ONE);

n= p.multiply(q);

BigInteger phiN= pM1.multiply(qM1);

// (p-1)*(q-1)

BigInteger e= THREE;

d= e.modInverse(phiN);

Where rnd is random number is obtained by Random class

which is defined in java.util package. And next prime is

obtained from following piece of code.

public BigInteger

nextPrime(BigInteger x)

{

if

((x.remainder(TWO)).equals(BigInteg

er.ZERO))

x = x.add(BigInteger.ONE);

while(true)

{

BigInteger xM1 = x.subtract

(BigInteger.ONE);

if

(!(xM1.remainder(THREE)).equals(Big

Integer.ZERO))

if (x.isProbablePrime(10)) break;

x = x.add(TWO);

}

return x;

}

}

Encryption and Decryption is obtained from following code

segment

public BigInteger RSADecrypt(BigInteger

c)

{

 return c.modPow(d, n);

}

public BigInteger RSAEncrypt(BigInteger

c)

{

 return m.modPow(e, n);

}

3. SECURITY STRENGTH OF RSA

CRYPTOGRAPHY
Security strength of RSA is enormous mathematical integer

factorization problem. Deducing the private key ‘d’ from its

equation e. d ≡ (1 mod ψ) where ψ = (p-1). (q-1), £ n Є I+,

such that n = p. q (p and q is large distinct prime number) is a

world wide effort. It required more processing power along

with storage. This paper introduced significant integer

factoring algorithms number field sieve (NFS) and its effort to

factor while The RSA-150 (512 bit) composite number ‘n’

have been considered. Other significant mathematical

methods/algorithm also has been discussed for assessment

through survey of Mathematical Review 94-2008A60. It has

been found that the 512 bit RSA number may be believed to

safe from the intruder.

4. POSSIBLE ATTACK ON RSA
If the advisory is able to factor the public modulus ‘n’ of same

entity A, then the adversary can compute ψ and then, using

Extended Euclidean algorithm deduce the private key d from

ψ and the public exponent ‘e’ by solving ed ≡ 1(mod ψ). This

constitutes a total break of the system. To guard against this,

A must set p and q so that factoring ‘n’ is a computationally

infeasible task [12].

4.1 Methodology
One of the importation applications of integer factorization is

RSA public key cryptosystem. The security of cryptosystem

depends on the intractability of factoring integers [13]. The

integer factorization is one of the problems that have been

long considered in the world of the number theory [12]. In the

last few decades, together with the rapid progress of computer

technology, methods for factoring integers efficiently were

studied, and as a result some algorithms were invented

through review. The major methodology or algorithm through

which‘d’ can deduce from ed ≡ 1(mod ψ), if we capable to

factor n. In fact it is strength of RSA security; nobody can say

which algorithm is best for factor ‘n’ on the word of

computational complexity.

Dixon’s method based on finding a congruence of squares.

Format’s factorization algorithm finds such congruence by

selecting random or pseudo-random x value and hoping, one

satisfied the congruence. X2 ≡ y2 (mod n); X = + Y; values

will take an impractically long time to find a congruence of

squares. In Pollard’s (ρ-1) algorithm meaning that it is only

suitable for integers with specific types of factors. The

algorithm is based on the insight that number of the form (ab-

1) tends to be highly composite when b is itself composite.

Since it is computationally simple to evaluate number of this

form in modular arithmetic, the algorithm allows one to quick

check many potential factors with greatest efficiency. In

particular the method will find a factor ρ if b is divisible by ρ -

1. When ρ -1 is smooth (the product of only small integer)

then this algorithm is well suited to discovering the factors.

The trial division is the simplest and easiest to understand of

the integer factorization algorithm. Given a composite integer

n, trial division consists of trial dividing n by every prime

number less than or equal to √n. If a number is found which

divides evenly into n, a factor of n has been found. Trail

division is guaranteed, to find a factor of n, since it checks all

possible prime factors of ‘n’. Then if the algorithm is fail, it is

proof. That n is prime. In worst case, trial division is very

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

16

inefficient algorithm. It starts from 2 and work up to the √n2 ,

the algorithm requires (л√n) trial divisions, where л (x) is the

number of primes less than x.

NFS (Number field sieve) algorithm uses four main steps;

polynomial selection, sieving, linear algebra and square root.

In polynomial section step two irreducible polynomial f1(x)

and f2(x) which are commonly root m (mod N) selected

having as many as practically possible smooth values over

given factor base. In the sieving steps, which is by far the

most time consuming steps of NFS pair (a,b) are found with

gcd (a,b) =1 such that both

bdeg(f1) f1(a/b) & bdeg (f2) f2(a/b)

Are smooth over given factor base i.e., factor completely over

the factor bases. Such a pair (a,b) called relation. The purpose

of this step is to collect so many relations that several subsets

S of them can be found with the property that a product taken

S yield on expression of the form X2 = Y2 (mod N) for

approximately half of these subsets, computing gcd (X-Y, N)

yields a non-trial factor of N (if N has exactly to distinct

factors). We only discussed sieving steps in NFS here [14-16].

ECM (Elliptical curve method) by Lenstra, and Takayuki

[17,18] makes use of property of Groups (G) of points on the

elliptic curve to find factor of composite number n. ECM can

find relatively small factors (< 50 digits) of so lange integers

that NFS cannot treat, because ECM does not have a

limitations with respect to n. For this reason ECM is still an

important technique for factorization at the present time

[19,20]. Lenstra, [21], and since than various improvements

has been worked out. The time complexity of some algorithm

is dependent on the given composite number n, and that other

is dependent on the smallest prime factor p of n. As per

algorithms discussed above, the average (or worst time)

complexity is shown below [21, 22]-

NFS : L n[1/3,1.901]

Trial Division : O(ρ)

ρ method : O(under root of ρ)

ρ -1 method : O(ρ’)

ECM : L p[1/2,1.414]

Here(,ρ’ is the largest prime division of (ρ -1). Here the

function Lx(1,c) defined as follows:

Lx(1,c) = exp((c + O(1) (logx)I(log log x)I-1))

And an algorithm that has the time complexity Ln(I,c) for

some c and I<1 (where, n is the input integer) is called a sub

exponential time algorithm. Note that Ln[O,C] = O(log n)c

(polynomial time) and Ln[1,c] = O(nc) (exponential time with

respect to the input length log n) [21]. It is concluded that the

best-known algorithm for factoring integer is NFS,

asymptotically and practically for very large composite

number (over 150 digits). The sieving phase that search fixed

set of prime number for candidate that have a particular

algebraic relationship, modulo the number to be factor. The

sieving phase can be done in distributed fashion, on large

number of processors simultaneously. The matrix-solving

phase require large amount of storage space [23-25] The

RSA-150 (512 bit) composite number ‘n’ have been

considered for factor by assuming NFS algorithm wherein n =

p q while for the sieving steps 200000 parallel Pentium-4

microprocessors (2.53 GHz), FSB 53 MHz, Intel Desktop

Motherboard D850EV2, i850 chip set, 1024 MB RAM,

PC800, Free BSD were used [25].

n=

15508981242834844050960675437001186

17706545458309954306554669457743126

32703463465954363335027577729025391

45399678471402700350163177218684089

0795964683

After factor through NFS obtained
p =

34800986710228369548397045104759342

48310128173503854568895596375482781

0717

q =

44564774490364074153324112578708617

60054425362977661534934197245324602

96199

The estimated sieving time to factor above RSA-150 (512 bit)

composite number ‘n’ was 20597260 second, approximately

of 239 days. This work supported by the CRIPTREC project

is promoted by Telecommunication advancement organization

of Japan. (mailto: macro@ntt.co.jp) [25]. Zimmermann, P., is

a French computational mathematician, working at INRIA

(The National Institute for Research in Computer Science and

Control (French: Institut national de recherche en

informatique et en automatique,INRIA). His interests include

asymptotically-fast arithmetic — he wrote a book [26] on

algorithms for computer arithmetic with Richard Brent. He

has developed some of the fastest available code for

manipulating polynomials over GF(2), and for calculating

hyper geometric constants to billions of decimal places. He is

presently associated with the CARAMEL project

(http://caramel.loria.fr/members.en.html) to develop efficient

arithmetic, in a general context and in particular in the context

of algebraic curves of small genus; arithmetic on polynomials

of very large degree turns out to be useful in algorithms for

point-counting on such curves. He factored RSA -704 on July

2, 2012 [26]. The CARAMEL project-team has three main

research themes [27]:

1. The number field sieve algorithm and its siblings,

for integer factorization and discrete logarithm in

finite fields,

2. Algebraic curves for cryptography, in particular

genus 2 curves and pairings,

3. Arithmetic in general, from integers to floating-

point numbers, in software and hardware.

Thus, it is concluded that, even ‘n’ is obtainable by the

intruder however, deducing the private key‘d’ from its

equation e. d ≡ (1 mod ψ) where ψ = (p-1). (q-1), £ n Є I+,

such that n = p. q (p and q is large distinct prime number) is

almost complicated. Currently RSA modulus ‘n’ of size 1024

bits is being used for all protocols/applications [28, 29].

5. SHORTCOMING AND OVERCOME

BY JAVA BIGINTEGER.
It is observed that this system is quite slow for large volume

of data. Foundation of this shortcoming is, in RSA public key

‘e’ is an integer and message m Є{0,1,2,3,4…..n-1} to be

encrypted therefore the computation of “me mod n” required

processing time O((size e)(size n)2) and space O(size e + size

n). Similarly, cause of slow for large volume of data is again

complexity occurred during the decryption process to

compute original message from cipher text c. The complexity

in the decryption process is O ((size d) (size n) 2). Means the

computational complexity is directly proportional to the

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

17

multiplication of (size e) and (size n) 2 while ‘m’ is a large

integer to be send. In other hand complexity is directly

proportional to the multiplication of (size d) and (size n) 2

during the decryption process while ‘c’ is a large integer. It

may be 1024 bits or more. The time and space complexity of

both the operations is given in the Tab. 1. This problem can

solve by fast exponentiation algorithm [1]. Many researchers

are used this algorithm to do so. However, it is found that,

Java BigInteger provides analogues to all of Java's primitive

integer operators, and all relevant methods as discussed in the

section 1.3. The encryption and decryption is discussed as :

return m.modPow(e, n);

return c.modPow (d, n);

This feature of Java is applied instead of fast exponentiation

algorithm to overcome the shortcoming.

Table 1. Complexity in RSA cryptography

Process Time Space

Encryption O((size e)(size n)2 O (size e + size n).

Decryption O((size d)(size n)2 O (size d + size n).

6. CONCLUSIONS
RSA cryptosystem is presently used in a wide variety of

products (TCP/IP, MIME, WAN, TELNET etc), platform

(Apple, Sun, Novel, and Microsoft) around the world

computer network for safely communication and

transformation. This paper discussed the comprehensive view

of the RSA cryptosystem, its straight, limitations, and various

methods such as trial division, ρ- method, ECM, and NFS for

breaking RSA system. It is found that RSA-1024 is absolutely

secure from the intruder, however has introduced more

computational complexity while increasing public key (e, n)

and private key (d, n). As far as concern to solve this problem

one can solve by fast exponentiation algorithms. However

many researchers are often used these algorithm. It is found

that, Java BigInteger provides analogues to all of Java's

primitive integer operators, and all relevant methods. This

feature of Java is successfully applied on the algorithm

instead of fast exponentiation algorithm to overcome this

shortcoming.

7. REFERENCES
[1] Kahn, D., 1967: The Codebreakers, Macmillan Co., New

York.

[2] Johannes, A., Buchmann, 2000: Introduction To

Cryptography, Springer-Verlog, Berlin, pp. 45-50, New
York.

[3] Rivest, R.L., 1990: Cryptography, Handbook of

Theoretical Computer Science, volume A (editor: J. van
Leeuwen), MIT Press/Elsevier, Amsterdam, pp.719-755.

[4] Brassard, G., 1988: Modern Cryptology, Springer-

Verlag.

[5] Brassard, G., 1993: Cryptography column - Quantum

cryptography: A bibliography, Sigact News (3) 24,
pp.16-20.

[6] Stinson, D.R., 1995: Cryptography - Theory and
Practice, CRC Press, Boca Raton.

[7] Stallings, W., 1995: Network and Internetwork Security -

Principles and Practice, Prentice-Hall, New Jersey.

[8] Simmons, G.J., 1992:, Contemporary Cryptology - The

Science of Information Integrity, IEEE Press.

[9] Schneier, B.,1995: Applied Cryptography: Protocols,
Algorithms, and Source Code in C, 2nd Edition, Wiley.

[10] Ford, W., 1994: Computer Communications Security

Principles, Standard Protocols and Techniques, Prentice-
Hall, New Jersey.

[11] Rivest, R.L., Shamir, A., Adleman, L.M., 1978:A

method for obtaining digital signatures and public-key

cryptosystems, Communications of the ACM (2) 21,
pp.120-126.

[12] Cavallar, S., Dodson, B., Lenstra, A.K., Lion ,W.,

Mongomery, P.L., Murphy, B., Riele, H., ,2000:

Factorization of RSA Modulus , Eurocrypt 2000,

Bruges, Belgium, May 14-18.

[13] RSA Data Security Corporation Inc. Sci. Crypt. Dec 18,

2004: Information available by sending E-mail :
challenge-rsa-list@rsa.com.

[14] Buhler, J.P., Lenstra Jr H.W., Pomerance, C., 1993:

Factoring Integer with NFS, Lecture notes in Maths ,
1554, Springer-Verlog, Berlin, pp. 50-94.

[15] Lenstra, A.K., Lenstra, H.W., 1990:The Number Field
Sieve, Proc., 22nd STOC, pp- 564-572.

[16] Aoki,K., Ueda, H., Kida, Y., 2004: NFS Factoring

Statistics, NTT Labs, Rikkuo University, Japan

[17] Lenstra, H.W. Jr, 1987: Factoring Integers with Elliptic
curve, Annals of Maths., pp. 649-673.

[18] Takayuki yato, 2006: Study on ECM for integer

factorization, A seminar thesis, Department of

Information Science, The university of Tokyo, 15 Feb
2006.

[19] Koblitz, N.,1989: Hyperelliptic Cryptosystem,

J.Cryptology, Vol.1, pp. 139-150.

[20] Sakai, Y.,Sakurai, K., 1998, Design of Hyperelliptic

Cryptosystem in small characteristics and software

implementation, ASIACRYPT’98, LNCS, Vol. 1514, pp.
80-94.

[21] Lenstra, A. K., 2000: Integer Factoring, Design code and

Cryptography, 19, Kluwer Academic publisher, pp.101-

128, Boston, Netherland.

[22] Cavallar, S., Dodson, B., Lenstra, A.K., Lion ,W.,

Mongomery,P.L., Murphy, B., Riele,H., 2000:

Factorization of RSA Modulus , Eurocrypt 2000,
Bruges, Belgium, May 14-18,

[23] Lenstra, A.K., Lenstra, H.W., 1990: The Number Field
Sieve, Proc., 22nd STOC, pp.564-572.

[24] Buhler, J.P., Lenstra Jr H.W., Pomerance, C., 1993:

Factoring Integer with NFS, Lecture notes in Maths ,
1554, Springer-Verlog, Berlin, pp. 50-94.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

18

[25] Aoki,K., Ueda,H., Kida, Y., 2004: NFS Factoring

Statistics, NTT Labs, Rikkuo University, Japan..

[26] Zimmermann, P., Cheng, H., Hanrot, G., Thomé, E.,

Zima, E., 2007: Time- and Space-Efficient Evaluation of

Some Hypergeometric Constants. In C W Brown.

Proceedings of International Symposium on Symbolic
and Algebraic Computation (ISSAC) 2007. pp. 85–91.

[27] CARAMEL Project, URL:

http://caramel.loria.fr/index.en.html.

[28] RSA Laboratories, The RSA Factoring Challenge.

Retrieved on 2008-03-10. URL:
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge.

[29] RSA Laboratories, The RSA Factoring Challenge FAQ.
Retrieved on 2008-03-10.

