

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

19

Pragmatic Implementation of RSA-1024 Cryptography

Sanjeev Karmakar
Bhilai Institute of Technology,

Durg, Bhilai House, 491001, Chhattisgarh, India

Siddhartha Choubey
Shri Shankaracharya Technical Campus / Shri

Shankaracharya group of Institutions, Bhilai, Durg,
India

ABSTRACT

Contemporary RSA-1024 system is used in the current world’s

computer networks for secure communication and transmission.

The RSA -1024 system is absolutely secure from the intruders.

However it required huge computational effort during

encryption and decryption. This can be solved by the fast

exponential method however again required mathematical

space and time complexity. Java mathematical tool provides

BigInteger APIs are significantly suitable to solve this

complexity problem. In this paper RSA public key (e, n) and

provate key (d, n) used as 1024 bits long large prime product.

The encryption and decryption is accomplished through the

methods of BigInteger class. In this paper, pragmatic RSA-

2048 cryptosystem is presented for e-mail service. The entire

design, implantation and deployment is presented in this paper.

Keywords

RSA, RMI, Cryptography, Encryption, Decryption, Network,

Security, RSA-1024, NFS, ECM

1. INTRODUCTION
The RSA cryptosystem is a public-key cryptosystem that

provides both encryption and digital signatures (authentication).

Ronald Rivest, Adi Shamir, and Leonard Adleman developed

the RSA system in 1977 ; RSA stands for the first letter in each

of its inventors' last names. Its security is supported on the

intractability of the integer factorization on the problem [1, 2]

will be discuss in this chapter afterward sections. Surveys by

Rivest [3] and Brassard [4, 5] form an excellent introduction to

modern cryptography. Some textbook treatments are provided

by Stinson [6] and Stallings [7], while Simmons provides an in-

depth coverage of the technical aspects of cryptography [8]. A

comprehensive review of modern cryptography can also be

found in Applied Cryptography [9]; Ford [10,11] provided

detailed reporting of subject for example cryptography

standards and secures communication.

In RSA algorithm, to generate public keys, encryption RSA

algorithm selects two large prime numbers p,q such that n=p. q

and ψ = (p –1). (q –1), and £ e Є I+, 1<e< ψ, such that gcd (e,

ψ) = 1. After that algorithm used Euclidean algorithm to

compute the unique integer d, 1<d< ψ, such that e. d ≡ (1 mod

ψ). Through that £ public key (n, e) and private key is d. these e

and d is RSA key generation are called the encryption exponent

and the decryption exponent respectively, while n is called the

modulus.

To send message (m), where m Є I+, £ m Є [0, n – 1] interval,

compute cipher text c ≡ me (mod n) at sender end this task is

known as encryption. At the receiver and again compute c d

(mod n) ≡ m to get the original message (m), this task is known

as decryption. To proof decryption task, since e. d ≡ 1(mod ψ),

£ k Є I such that e. d = 1 + k ψ. Now if gcd (m, p) = 1 then by

Format’s theorem mp-1 = mod p. Raising both side of this

congruence to the power of k(q-1) and then multiplying both

side by m yields

m1+k (p-1)(q-1) = m (mod p)

On the other hand, if gcd(m,p) =p, then this last congruence is

again valid since each side congruence to 0 modulo p.

Hence in all cases

med ≡ m(mod p)

By same argument med ≡ m(mod q). Finally, since q and q are

distinct primes, it follows that (me)d ≡m (mod n); and hence

ed ≡ (me)d ≡ m (mod n).

Here, single client is connected with the server. In general, in

the for all computer network applications, often multiple clients

are connected with sever. For multiple client server applications

it is noted that server computes unique public as well as private

key for each connected clients. Following Figure 1 shows how

server will send unique public key for each connected clients

and maintain unique private key for each client as well. At this

juncture, three clients are connected with the server is shown.

Server will generate three set of public and private key for each

connected clients. It is cleared that, each client have their own

pair of key for the secure communication. This feature

produces security potency of the system as well. In the

subsequent sections of the chapter the detail design and Java

code of a multi client server RSA cryptography system is also

discussed. Readers of this book may use this code and exhibit

the system in their machine or LAN. In the next section, an

example of RSA cryptography is explained.

Fig.1. Multi-client Server based RSA-1024 Cryptography

System

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

20

2. JAVA BIG INTEGER
Java BigInteger provided analogues to all of Java's primitive

integer operators, and all relevant methods from

java.lang.Math. Additionally, BigInteger provides operations

for modular arithmetic, GCD calculation, primality testing,

prime generation, bit manipulation, and a few other

miscellaneous operations. Modular arithmetic operations are

provided to compute residues, perform exponentiation, and

compute multiplicative inverses. It has been found the

implementation of RSA algorithm can be easily obtained from

following code segment. Detail of implementation procedure as

well as code is given in the subsequent sections of this chapter.

int size1 = size/2;

int size2 = size1;

 int offset1 = (int)(5.0*(rnd.nextDouble()) +

5.0);

 int offset2 = -offset1;

 if (rnd.nextDouble() < 0.5) {

offset1 = -offset1; offset2 = -offset2;}

size1 += offset1; size2 += offset2;

// generate two random primes, so that p*q = n

has size bits

BigInteger p1= new BigInteger(size1, rnd); //

random int

p= nextPrime(p1);

BigInteger pM1= p.subtract(BigInteger.ONE);

BigInteger q1 = new BigInteger(size2, rnd);

q= nextPrime(q1);

BigInteger qM1= q.subtract(BigInteger.ONE);

n= p.multiply(q);

BigInteger phiN= pM1.multiply(qM1); // (p-1)*(q-

1)

BigInteger e= THREE;

d= e.modInverse(phiN);

Where rnd is random number is obtained by Random class

which is defined in java.util package. And next prime is

obtained from following piece of code.

public BigInteger nextPrime(BigInteger x)

{

if

((x.remainder(TWO)).equals(BigInteger.ZERO))

x = x.add(BigInteger.ONE);

 while(true) {

BigInteger xM1 =

x.subtract(BigInteger.ONE);

 if

(!(xM1.remainder(THREE)).equals(BigInteger.ZERO)

)

if (x.isProbablePrime(10)) break;

x = x.add(TWO);

}

return x;

}

}

Encryption and Decryption is obtained from following code

segment

public BigInteger RSADecrypt(BigInteger

c)

{

 return c.modPow(d, n);

}

public BigInteger RSAEncrypt(BigInteger

c)

{

 return m.modPow(e, n);

 }

An application has been developed to demonstrate RSA

cryptography in multi-client server environment as shown in

above Figure 1. Wherein, multiple clients are connected with

the server to send text message to the server in specific user id.

For that server generates unique public key as well as private

key for each client as discussed above in the section 2 and

depicted in Figure 1. Encrypted text message is transferred to

the server from the client. Server accepts the cipher text.

Decrypts it to converts original message by using

corresponding private key of the client. And save into the mail

box (server database). To obtain this objective RSA algorithm

has been implemented by using Java. It is found that Java math

package supports public class BigInteger class (for detail see

package java.math package) that is appropriate for such big

numbers calculations. BigInteger provides analogues to all of

Java's primitive integer operators, and all relevant methods

from java.lang.Math. Additionally, BigInteger provides

operations for modular arithmetic, GCD calculation, primality

testing, prime generation, bit manipulation,and a few other

miscellaneous operations.

3. REMOTE METHOD INVOCATION

(RMI)
Java Remote Method Invocation (RMI) technology is used to

create multi client server based network system. Input and

output interfaces are developed by using Java swing. Another

alternative is Java socket is not adopted to develop distributed

nature of the system because the problems with sockets

essentially stem from the fact that they are very primitive.

Not part of Object Model. They don't fit in with the

object model - we are explicitly creating and using

[low-level] communications links. This is at odds

with our use of an object-oriented programming

language, based around the invocation of methods

belonging to objects. RMI allows us to continue to

use our object-oriented paradigm even though we are

dealing with distributed systems. (On the other hand,

there is a growing view that distributed programming

is not well-served by the object model - driven by the

web services model.)

Point-to-point. Each socket only represents a

communication link between two hosts. There is no

mechanism to, say, find out where specific services

are offered - you must simply know.

Data only. On the face of it, you can only send data

over socket connections (and you would have to go to

some trouble to send more than simple data). There is

in fact a way of sending more complex objects -

methods as well as data - known as serialization.

Serialization with RMI or with 'raw' sockets can be

use. However, there is no clear, standard mechanism

to, for example, invoke methods over sockets.

We could, of course, construct a software layer on top of simple

sockets. This would allow us to locate hosts offering particular

services, using some kind of 'clearing house' system. It would

then allow us to invoke methods directly on remote objects.

This is precisely what Java RMI does for us.

The basic structure of an RMI-based method call involves a

client, a server and a registry. To make a call to a remote

object, the client first looks up the object it wishes to invoke a

method on in the registry. The registry returns a reference to the

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

21

object (assuming it exists) on the server, which the client can

use to invoke any methods that the remote object implements.

The client communicates with the remote object via a User-

defined interface that is actually implemented by the remote

object. The client actually does not deal directly with the

remote object at all, but with a code stub that deals with the

process of communication between client and server (using, in

the default case, sockets).

At the server end, in pre-Java 2 JDKs (before JDK 1.2), a code

skeleton dealt with client communication. In Java 2, the

skeleton is no longer needed. Fortunately, the code stub (and

skeleton if necessary) are generated automatically by the RMI

Compiler rmic. Remote objects can be invoked with

parameters, naturally - these parameters can be entire objects,

complete with methods that are passed using serialization. The

basic structure is shown in Figure 2.

The RMI server must implement the remote object's interface,

and hence it must implement the methods in that interface. (It

can in fact implement other methods as well, but such

additional methods will only be available to other objects on

the server to call - only those methods declared in the interface

will be accessible remotely.) In addition, it is commonly the

case that remote objects extend the class

java.rmi.server.UnicastRemoteObject, which provides the

default behavior required for RMI-based communication in

'typical' cases. It is also possible for you to define your own

such behavior, but that is beyond the scope of this module. In

addition to the methods of the interface, the server must also

undertake a certain amount of initialization - make the remote

object(s) available by binding them into the registry.

Fig. 2. The Basic Architecture of RMI

4. ARCHITECTURE OF RSA-1024
Object oriented analysis (OOD) is concerned here with

developing system engineering requirements and specifications

that spoken as a system's class/object model, functional model.

Class description or class models have been prepared for the

server and client. These are shown in Table 1 and 2

respectively. And prepared object model and functional model

is depicted in the Figure 3 and 4 respectively.

Fig. 3. Object model

Fig. 4. Functional Model

4.1 Centralized database
Microsoft access database system is used to create database for

the system wherein following database tables (DB_Table) are

defined and used. Java JDBC-ODBC Bridge (see following

code segment) is used to provide connection between server

interface and database. Wherein, ServerDatabase is the Data

Source Name (DSN). Users of this system have to create a

DSN from Microsoft Windows control panel Administrative

Tool. Administrative Tool provides a shortcut Data Source

(ODBC) will provide following interface to create DSN.

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con=

DriverManager.getConnection("jdbc:odbc:ServerDat

abase");

st= con.createStatement();

}

catch(Exception e)

{

System.out.println("Error:"+e);

}

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

22

DB_Table: Mailbox

DB_Table: UserInfo.

5. DEPLOYMENT
To install the system in personal computer or local network

carefully check following checksum.

1. All machine in network and connected through

TCP/IP protocol, having unique InetAddress.

2. Jdk1.5.0 is already installed in the server as well as

server machine.

3. Set path in autoexec.bat file path= “C:\jdk1.5.0\bin”

in server as well as client machine.

5.1 Server Installation
Following steps are needed to install the server in server

machine.

1. Create a directory in server machine say C:\Server.

2. Copy following files in C:\Server.

3. Start rmiregistry by command- C:\Server\start

rmiregistry

4. Create a DSN named by ServerDatabase in server

machine and set path

“C:\Server\ImapRSAmailBox.mdb”.

5. Start server by command- C:\Server\StartServer.

6. Server interface is depicted in Figure 5 (a).

5.2 Client Installation
Following steps are needed to install the client program in the

client machine.

1. Create directory in client machine C:\Client.

2. Copy following class file in the directory C:\Client.

3. Make sure that your server machine InetAddress has

been taken in client program name by class

ImapRSAMailWin to lookup servers object.

4. Start client by command- C:\Client\StartClient.

Client interface is depicted in Figure 5 (b)

(a)

(b)

Fig. 5. (a). Server interface. (b). Client interface

6. DISCUSSIONS
The security strength of RSA is based on integer factorization

problem. In mathematics, the RSA numbers are a set of large

semiprimes (numbers with exactly two prime factors) that are

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

23

part of the RSA Factoring Challenge. The challenge was to find

the prime factors but it was declared inactive in 2007 [12]. It

was created by RSA Laboratories in March 1991 to encourage

research into computational number theory and the practical

difficulty of factoring large integers. RSA Laboratories

published a number of semiprimes with 100 to 617 decimal

digits. Cash prizes of varying size were offered for factorization

of some of them. The smallest RSA number was factored in a

few days. Most of the numbers have still not been factored and

many of them are expected to remain unfactored for quite some

time. As of November 2010, 16 of the 54 listed numbers have

been factored: the 15 smallest from RSA-100 to RSA-200, plus

RSA-768.

The RSA challenge officially ended in 2007 but people can still

attempt to find the factorizations. According to RSA

Laboratories, "Now that the industry has a considerably more

advanced understanding of the cryptanalytic strength of

common symmetric-key and public-key algorithms, these

challenges are no longer active."[13] Some of the smaller prizes

had been awarded at the time. The remaining prizes were

retracted.

The first RSA numbers generated, from RSA-100 to RSA-500,

were labeled according to their number of decimal digits. Later,

beginning with RSA-576, binary digits are counted instead. An

exception to this is RSA-617, which was created prior to the

change in the numbering scheme. The numbers are listed in

increasing order below.

Table 3. RSA Number

RSA-

100

RSA-

170

RSA-

230

RSA-

290

RSA-

360

RSA-

450

RSA-

110

RSA-

576

RSA-

232

RSA-

300

RSA-

370

RSA-

460

RSA-

120

RSA-

180

RSA-

768

RSA-

309

RSA-

380

RSA-

1536

RSA-

129

RSA-

190

RSA-

240

RSA-

1024

RSA-

390

RSA-

470

RSA-

130

RSA-

640

RSA-

250

RSA-

310

RSA-

400

RSA-

480

RSA-

140

RSA-

200

RSA-

260

RSA-

320

RSA-

410

RSA-

490

RSA-

150

RSA-

210

RSA-

270

RSA-

330

RSA-

420

RSA-

500

RSA-

155

RSA-

704

RSA-

896

RSA-

340

RSA-

430

RSA-

617

RSA-

160

RSA-

220

RSA-

280

RSA-

350

RSA-

440

RSA-

1024

In this paper, above code is given for RSA-1024 has 1,024 bits

(309 decimal digits) cryptographic system. The system

generates RSA-1024 bits prime product ‘n’, and has not been

factored so far. US$100,000 was previously offered for

factorization. Successful factorization of RSA-1024 has

important security implications for many users of the RSA

public-key authentication algorithm, as the most common key

length currently in use is 1024 bits. To know detail of RSA

challenges and related research area visit url

http://www.rsa.com/rsalabs/. Another research area of RSA

algorithm is that it is quite slow for large volume of data has

huge time and space complexity (see Table 3) during the

encryption and decryption process.

Example of RSA-1024 =

6191235984721236967128880624626013812212052

3872891516526642275753553777153149561333303

7401658612544833474006193147926873462965364

4651800800938861490432161507645110125287810

1228221166215805514188295353950264428180250

8065076685494027759522543449885511466585297

0853971989413138402658275762711728119244056

9395083

7. CONCLUSIONS
In this paper, comprehensive implementation of RSA-1024

cryptography with a case as e-mail service in the multi-client

server environment on centralized database has been discussed.

Wherein, RSA modulus ‘n’ of size 1024 bits is used. The java

BigInteger class has provided sufficiently suitable methods to

overcome the calculations dilemma during the encryption and

decryption operations on communication and transformation of

message. It is concluded that BigInteger may be applied for the

RSA-1024 system for increasing speed of process. This

implementation is very constructive when readers are eager to

use RSA-1024 algorithm in their own applications without

desire to implement fast exponential algorithm in their

applications. The BigInteger may also be used in RSA-2048

system however here implementation for RSA-1024 system is

discussed.

8. REFERENCES
[1] Kahn, D., 1967. The Codebreakers, Macmillan Co., New

York..

[2] Johannes, A., Buchmann, 2000. Introduction To

Cryptography, Springer-Verlog, Berlin, pp. 45-50, New

York 2000.

[3] Rivest, R.L., 1990. Cryptography, Handbook of

Theoretical Computer Science, volume A (editor: J. van

Leeuwen), MIT Press/Elsevier, Amsterdam, pp.719-755.

[4] Brassard, G., 1988. Modern Cryptology, Springer-Verlag.

[5] Brassard, G., 1993. Cryptography column - Quantum

cryptography: A bibliography, Sigact News (3) 24 (1993),

pp.16-20.

[6] Stinson, D.R., 1995. Cryptography - Theory and Practice,

CRC Press, Boca Raton.

[7] Stallings, W., 1995: Network and Internetwork Security -

Principles and Practice, Prentice-Hall, New Jersey.

[8] Simmons, G.J., 1992. Contemporary Cryptology - The

Science of Information Integrity, IEEE Press.

[9] Schneier, B.,1995. Applied Cryptography: Protocols,

Algorithms, and Source Code in C, 2nd Edition, Wiley.

[10] Ford, W., 1994. Computer Communications Security

Principles, Standard Protocols and Techniques, Prentice-

Hall, New Jersey.

[11] Rivest, R.L., Shamir, A., Adleman, L.M., 1978. A method

for obtaining digital signatures and public-key

cryptosystems, Communications of the ACM (2) 21,

pp.120-126.

[12] RSA Laboratories, The RSA Factoring Challenge.

Retrieved on 2008-03-10.

[13] RSA Laboratories, The RSA Factoring Challenge FAQ.

Retrieved on 2008-03-10

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

24

9. APPENDIX
Table 1. Class Description of Server

No. Class/Interface Constructor(s) Methods

1 ImapRSAMailServerIntf

extends Remote

-No- Method have been declared as per the server

functionality implemented in

ImapRSAMailServerImpl class. The methods

are-

public String [] getConnection(String

IpAddress) throws RemoteException;

public String closeConnection(String

IpAddress) throws RemoteException;

public String submitNewUserInfo(String

UID, String Pass, String RePass, String

Name, String FName, String DOB, String

Deptt, String Add, String Phone, String

Email, String DOJ)throws RemoteException;

public String userVerification(String UID,

String Pass) throws RemoteException;

public String submitMail(String From, String

To, String CC, String sub, String Date, String

Message) throws RemoteException;

public String[][] readMail(String Id) throws

RemoteException;

public String[] readMailContent(String

Sender, String Subject) throws

RemoteException;

2 ImapRSAMailServerImpl

extends

UnicastRemoteObject

implements

ImapRSAMailServerIntf

public

ImapRSAMailServerImpl()throws

RemoteException

used to create object and JDBC

connectivity.

public String[] getConnection(String Ip)

throws RemoteException

Used to provide

1. Connection between client and

server.

2. Create RSA public key (e,n) and

private key (d,n) and send public

key (e,n) to the client by creating

object of class Random,

RSAPrivateKey1.

Public String closeConnection(String Ip)

throws RemoteException

Used to close connection and freeing the

socket.

Public String submitNewUserInfo(String

UID, String Pass, String RePass, String

Name, String FName, String DOB, String

Org, String Add, String Mob, String Phone,

String Fax) throws RemoteException

Used to submit user information in database

and send acknowledgment to client.

public String userVerification(String UID,

String Pass) throws RemoteException

Used to check authentication of client request

and sent response to the client.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

25

public String submitMail(String From, String

To, String CC, String Sub, String Date,

String Message) throws RemoteException

Used to submit mail from the client in

mailbox after decryption using RSA

algorithm.

public String[][] readMail(String Id) throws

RemoteException

Used to send mailing list to the client

public String[] readMailContent(String

Sender, String Subject) throws

RemoteException

Used to send mail content to the client.

3 ImapRSAMailServer extends

JFrame implements

ActionListener

ImapRSAMailServer()

Used to

1. Display server GUI,

2. Create server object .

3. Rebind server in port 1025

(user defined) by rebind()

method of Naming class.

No user defined method is created however,

method called in the

public void actionPerformed(ActionEvent)

method of ActionListener.

4 ClientMachineID extends

JInternalFrame implements

ActionListener

ClientMachineID

(ImapRSAMailServer)

Used to display connected users

machines user Id plus IP Address

No user defined method is created however,

method called in the

public void actionPerformed(ActionEvent)

method of ActionListener.

5 StartServer extends JWindow

implements Runnable

StartServer ()

Used to object of class

ImapRSAMailServer

public void run()

Used to display initial window of server

Duration: 1000 ms.

6 RSAPrivateKey1

extends RSAPublicKey

public RSAPrivateKey1(int size,

Random rnd, String name)

Used to create

1. Two large (512 byte long)

prime integer number.

2. n= p.q;

3. si= (p-1).(q-1).

4. public key (e,n)

5. Private key (d,n)

public BigInteger nextPrime(BigInteger x)

Used to create next possible prime number.

7 RSAPublicKey public RSAPublicKey(String name) public BigInteger RSAEncrypt(BigInteger

m)

public BigInteger RSAEncrypt(BigInteger

m)

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

26

Table 2. Class/Interface description of remote clients

 No. Class/Interface Constructor(s) Method(s)

1 ImapRSAMailWin extends

JFrame implements

ActionListener

ImapRSAMailWin()

Used to provide

1. GUI -Desktop Pane with

internal fames.

2. Connection by using lookup()

method of Naming class. And

by calling getConnection()

method of server.

3. create object of NewUser class

4. Object of Login class.

5. Used to close connection by

calling closeConnection()

method of the server.

-Nil-

All the server function call achieved by

either in constructor or

public void actionPerformed(ActionEvent)

method of ActionListener. No user defined

function created.

2 NewUser extends

JInternalFrame implements

ActionListener

NewUser(ImapRSAMailWin)

Used to provide

1. GUI for creating new user

entry in the server by calling

server method public String

submitNewUserInfo(String

UID, String Pass, String

RePass, String Name, String

FName, String DOB, String

Deptt, String Add, String

Phone, String Email, String

DOJ)throws

RemoteException; of the

server.

2. Display authenticated

information to the client as per

the response of server.

No user defined function is created however,

server method called or functionality

achieved in the method

public void actionPerformed(ActionEvent)

method of ActionListener.

3 Login extends

JInternalFrame implements

ActionListener

Login(ImapRSAMailWin)

Used to

1. Provide GUI for login process.

2. Check validation by remote

method invocation

userVerification().

3. If valid user then create object

of MailBox class to view

mailbox GUI.

No user defined methods are created

however, server method called in the

public void actionPerformed(ActionEvent)

method of ActionListener.

4 MailBox extends

JInternalFrame implements

ActionListener,

MouseListener, ItemListener

MailBox (Login)

Used to-

1. Create GUI to compose mail,

Inbox etc.

2. Compose mail facility

achieved by remote method

invocation where method is

submitMail().

3. Inbox facility achieved by

creating object of class

No user defined function is created however,

server method called or functionality

achieved in the method

public void actionPerformed(ActionEvent)

method of ActionListener.

public void mouseClicked(MouseEvent me)

public void mouseEntered(MouseEvent me)

public void mouseExited(MouseEvent me)

public void mousePressed(MouseEvent me)

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 3 – No.1, October 2015 – www.caeaccess.org

27

MailBoxContent public void mouseReleased(MouseEvent

me)

of MouseListener interface

public void itemStateChanged(ItemEvent i)

of ItemListener interface.

5 MailBoxContent extends

JInternalFrame

MailBoxContent(MailBox)

Used to display mail contents.

No user-defined function is created

functionality achieved in constructor only.

