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ABSTRACT
Color quantization process is considered in two stages: the selec-
tion of an optimal color palette and the mapping of each pixel
of the image to a color from the color palette. Since the color
palette is limited, some disturbing degradations such as false con-
tours are visible on delivered color quantized images. A common
way to overcome this problem is the use of dithering techniques.
In this paper, two methods for color quantization are proposed for
the use with color dithering techniques in a way that better re-
sults will be obtained after dithering. The results show that the
proposed methods, when used with dithering techniques, signifi-
cantly improve the visual quality of the resulting color quantized
images compared to the traditional color quantization algorithms.
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Keywords
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1. INTRODUCTION
Color quantization is the process of reducing the number of col-
ors presented in a digital full color image. Originally, color quan-
tization has been used to satisfy the display hardware constraints
that allow only a limited number of colors to be displayed si-
multaneously. Today the original motivation of color quantiza-
tion has changed due to the availability of inexpensive full color
displays. However, color quantization is still an important prob-
lem in the fields of image processing and computer graphics [2].
It can be used in mobile and hand-held devices where memory
is usually small [26], it can be used for low-cost display and
printing devices where only a small number of colors can be dis-
played or printed simultaneously [29]. It also has been used as
a preprocessing step for many applications such as object recog-
nition [31], image compression [35], and content-based image
retrieval (CBIR) [32].

Regardless of color quantization algorithm used, reconstruction
of an image with a limited number of representative colors (color
palette) will cause highly visible degradations in image quality.
The most disturbing of these degradations is the appearance of
false contours. False contours appear when batches of colors in
a smooth gradient area are mapped into a constant palette colors
forming a flat regions; boundaries between such regions may be
visible as false contours as shown in Fig. 1.

A common way to overcome the problem of false contours is the
use of dithering techniques. Dithering techniques make use of
the averaging property of the human eye to the colors in a neigh-
borhood of the point of interest and create the illusion of more
colors. A dithering technique called error diffusion achieves this
effect by distributing the error encountered in quantizing a pixel
to the neighboring pixels. This results in an alternation of palette
colors in the neighborhood and is perceived as a new color by the

Fig. 1: Appearance of false contours in color quantized images. (a) Full
color image, (b) Color quantized image with 16 colors, (c) Color quan-
tized image with 32 colors, (d) Color quantized image with 64 colors.

eye. Some well-known error diffusion filters are Floyd-Steinberg
[4], Stucki [30], and Jarvice-Judice-Ninke [9].

Usually color quantization and dithering are performed sequen-
tially; the quality of the dithering process depending on the selec-
tion of the color palette. Standard methods of color quantization
do not take dithering into account. Therefore, the desirable quali-
ties obtained by quantization are often disturbed by the dithering
process. The most commonly used algorithms for color quanti-
zation are: median-cut [8], center-cut [10], octree [7], k-means
[15], Wu’s quantizer [34], fuzzy C-means [12], and SOM [3].

There is some previous work for jointly quantizing and dither-
ing color images in the literature. Orchard [19] used binary tree
splitting (BTS) to create the color palette that minimizes the total
squared difference between the actual and the quantized images
and then modified dithering techniques are combined with quan-
tization process. A modified BTS quantizer of [19] is proposed
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in [1] in such a way that at leaves the pair of cluster centers are
given equal displacements from each other following the split in
order to span a larger volume of color space. This creates an illu-
sion of more colors after dithering. In competitive learning and
error diffusion algorithm [29], the quantization error is diffused
to neighboring pixels during learning process. In [21] three new
fuzzy methods to jointly quantize and dither the color images are
presented; in two of them a fraction of the quantization error is
distributed to neighboring pixels during creating color palettes
and then perform quantization and dithering as usual with the re-
sultant palette, while the third method is to enlarge the convex
hull of the quantization colors to obtain a color palette which is
more suitable for dithering.

This paper is organized as follows: Section 2 explains the Op-
timal Color Palette for Error Diffusion Techniques method. In
Section 3, the Local Fractal Dimension-Based Color Quantiza-
tion method is presented. This study is concluded in Section 4.

2. OPTIMAL COLOR PALETTE FOR ERROR
DIFFUSION TECHNIQUES

In this section, the first method for quantization of color images
to be used with error diffusion techniques is presented. It con-
sists of three steps: in the first step, the colors in original image
are quantized into a number of colors that is much smaller than
the desired number of colors. In the second step, the remaining
palette colors are selected around each palette color generated in
the first step based on the CIELAB color space Just Noticeable
Color Difference (JNCD) threshold, and also on the size of the
clusters. Finally, error diffusion technique is incorporated within
the process of pixel mapping.

2.1 Choice of Color Space
The CIE L∗a∗b∗ (CIELAB) and L∗u∗v∗ (CIELUV) color spaces
[25] are considered perceptually uniform and referred to as uni-
form color spaces in which the Euclidean distances between dif-
ferent colors in the color space correspond approximately to per-
ceived color differences. The application of uniform color spaces
to the problem of color quantization has been studied by Gentile
et al. [5] and to half-toning [6], the results indicate that such color
spaces can significantly improve quality of the quantized image
relative to the standard RGB color space. The CIE recommended
using XYZ coordinate system to transform RGB to L∗a∗b∗. The
following equations are used to transfer RGB to XYZ.

(
X
Y
Z

)
=

(
0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

)(
R
G
B

)
(1)

And then from XYZ to CIELAB color space

L∗ =

{
116 (Y/Yn)1/3 − 16, if Y/Yn > 0.008856
903.3 (Y/Yn) , if Y/Yn ≤ 0.008856

(2)

a∗ = 500 (f (X/Xn)− f (Y/Yn)) (3)

b∗ = 200 (f (Y/Yn)− f (Z/Zn)) (4)

where

f (t) =

{
t1/3, for t > 0.008856
7.787 ∗ t + 16/116, for t ≤ 0.008856

(5)

Here Yn = 1.0 is the luminance, and Xn = 0.950455, Zn =
1.088753 are the chrominances for the D65 white point.

Fig. 2: Floyd-Steinberg vector filter for a single pixel.

Two colors in CIELAB color space are perceptually distinguish-
able from each other if the Euclidean distance between these two
colors is greater than a threshold value 3 [16]. This threshold is
known as the Just Noticeable Color Difference (JNCD) thresh-
old.

2.2 The Proposed Color Quantization Method
After transforming the input image into the CIELAB color space,
the quantization process is composed of the following steps:

—Step 1: Generation of Initial Palette Colors
In this step, the colors in the original image are quantized into
a small set of M colors that is much less than the desired K

palette colors (M = 2b
log2 K

2 c) using k-means algorithm or
any other quantization algorithm.

—Step 2: Selection of the Remaining Palette Colors
After the generation of the initial palette colors, the remaining
(K −M) palette colors are selected around the initial palette
color based on CIELAB JNCD threshold value 3. The use of
CIELAB JNCD threshold is to ensure that the selected palette
colors are far from each other by a distance that is greater than
the CIELAB JNCD threshold to be distinguishable from each
other. The number of selected palette colors around a given
initial palette color is proportional to the size of cluster of im-
age colors represented by that initial palette color.
For an initial palette color Pi that represents a cluster
{C1, C2, ..., CRi

} of image colors, a set Si of Ri
N

(K −
M) distinct image colors will be selected around Pi from
{C1, C2, ..., CRi

} and are assigned as new palette colors. N
is the total number of distinct colors in the original image. The
selection of the Si palette colors around Pi is done as follows:

Pij = min
P∈{Pi1

,Pi2
,..,Pij−1 }

{d(P,C) > 3 : C ∈ {C1, C2, .., CRi
}}

(6)

j = 2, . . . , |Si|+ 1, (Pi1 = Pi)

where d is the Euclidian distance between two colors in the
CIELAB color space.

—Step 3: Pixel Mapping with Error Diffusion
Once the color palette has been designed, the quantized image
is produced by mapping each pixel to the closest color from
the color palette. To overcome the problem of false contours
that are commonly sensed in color quantized images, error
diffusion technique is incorporated within the pixel mapping
process. The pixels in the original image are chosen in raster
ordering from left to right and top to bottom. Each pixel is
quantized and the quantization error is propagated forward to
the neighboring pixels that have not yet been quantized. Fig. 2
shows Floyd-Steinberg [4] filter that is used to perform the
error diffusion.
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2.3 Results and Discussions
Standard color quantization process is generally considered as
a clustering problem to find the K palette colors that minimize
some error criterion for all the colors in an image. However, two
problems are associated with performing error diffusion tech-
niques for color quantized images. The first problem is, if a given
color is close to the boundary of a color cluster, the quantization
errors accumulate and eventually a palette color from a different
cluster is produced. This exposes itself as a color impulse that is
very disturbing. On the other hand, in smooth regions usually the
colors are very close to a palette color with a small dithered error.
Therefore those colors will be mapped to the same palette color
forming flat regions. This results the existence of some false con-
tours after dithering. These two problems disappeared in the pro-
posed method because the palette colors are distributed around
few initially selected palette colors. Therefore it needs a small
diffused error to jump from one palette color into another close
palette color in the same cluster. This results a high alternation of
palette colors between neighboring pixels to give full illusion of
smooth gradation and hence reduces visible false contours. The
selection of palette colors from the same cluster will avoid the
presence of color impulses.

In Fig. 3 and Fig. 4 two full color images are quantized by
the proposed method. The same two images are also presented
to four popular quantization algorithms namely: k-means [13],
median-cut [8], octree algorithm [7], and SOM [3], in which
the Floyd-Steinberg error diffusion was incorporated within the
pixel mapping process. It is observed that applying the Floyd-
Steinberg dithering on the other quantization algorithms causes
the creation of color impulses. The color impulses are in the form
of isolated green and dark blue pixels on sky area in Fig. 4(b)-
(f). It is also observed that some false contours remain visible
in these images in the smooth gradient area in Fig. 3(b)-(f).
Fig. 3(a) and Fig. 4(a) are the results of the proposed method
that shows better performance when compared to the other algo-
rithms. As expected, disturbing colored impulses and false con-
tours are minimized compared with other algorithms.

3. LOCAL FRACTAL DIMENSION-BASED
COLOR QUANTIZATION FOR ERROR
DIFFUSION TECHNIQUES

In this section, the second method for color quantization to be
used with dithering techniques is presented. The premise of the
proposed method is to improve the perceived quality in low ac-
tivity (smooth) regions where false contours in an image are
most likely to occur while preserving structure that is commonly
lost in high activity (busy) regions when applying dithering tech-
niques. Improving the perceived quality in low activity regions
is achieved by introducing more colors to regions with low ac-
tivity in order to move quantization errors from low activity re-
gions to high activity regions. The errors will be less visible to
the human eye as the human visual system is less sensitive to
quantization errors in high activity regions than to errors in low
activity regions. Preserving structure in high activity regions will
be achieved by applying dithering techniques only to low activ-
ity regions where false contours in an image are most likely to
occur.

3.1 Local Fractal Dimension
Fractal dimension of imaged 3D surfaces can be used as a mea-
sure to perceptually distinguish between smooth and rough tex-
tured regions [22, 23]. It has been widely applied to many fields
of digital image processing, such as texture classification and
segmentation[14, 24, 11, 18], image data compression [17], and
computer graphics [36].

Fig. 3: Color quantized images with 128 colors followed by Floyd-
Steinberg error diffusion. (a) Proposed method, (b) K-means, (c) Median
Cut, (d) Octree, (e) SOM.
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Fig. 4: Color quantized images with 128 colors followed by Floyd-
Steinberg error diffusion. (a) Proposed method, (b) Kmeans, (c) Median
Cut, (d) Octree, (e) SOM.

Sarkar and Chaudhuri [27, 28] proposed a method to find the
fractal dimension of images known as differential box counting
method. In their method, for an image of size M × M pixels
scaled down to a size s × s where M/2 ≥ s > 1 and s is
an integer. The entire image can be considered as a 3-D space
with (x, y) denoting 2-D position and the third coordinate (z)
denoting gray level. The (x, y) space is partitioned into grids
of size s × s. On each grid there is a column of boxes of size
s × s × s′ (see Fig. 5). If the total number of gray levels is G,
then bG/s′c = bM/sc. The contribution of the (i, j)th grid is

Fig. 5: Estimation of fractal dimension [28]

computed as

nr = l − k + 1 (7)

where the minimum and maximum gray level of the image in
the (i, j)th grid fall in box number k and l, respectively. For
example in Fig. 5 where s = s′ = 3, assign numbers 1, 2, .
. to the boxes as shown. Let the minimum and maximum gray
level of the image in the (i, j)th grid fall in box number 1 and
3, respectively. The contribution of the (i, j)th grid is given as
nr(i, j) = 3− 1 + 1. Taking the contribution of all grids, Nr =∑

i,j
nr . Nr is counted for different values of r, i.e., different

values of s. Using the following equation:

1 = Nr × rD or D = log(Nr)/ log(1/r) (8)

The fractal dimension D can be estimated from the least square
linear fit of log(Nr) against log(1/r).

Fig. 6 shows the original images (left) and their local fractal di-
mension (LFD) maps (right) where every position (i, j) in the
LFD map represents the LFD value estimated using a 3 × 3 lo-
cal window centered at position (i, j) in the original image. The
LFD values are scaled into the rage 0-255 for display purpose.
Notice how the low activity (smooth) regions are given small
LFD values (darker) while the high activity (busy) regions are
given large LFD values (brighter). It would be easy to distin-
guish between such regions and weight the importance of a pixel
based on the spatial activity of the area of the image where the
pixel appears. The pixel’s importance (activity weighting) is in-
versely proportional to the activity level of the region where it
appears in the image.

3.2 Construction of Color Palette
To describe the proposed algorithm for color image quantiza-
tion using local fractal dimension (LFD) maps, the k-means [13]
algorithm which is the basis of the proposed algorithm is first
explained. Generally the k-means algorithm seeks to minimize
an objective function which is defined as

j =

k∑
i=1

∑
C∈Si

W (C)
∥∥C − C̄Si

∥∥2 (9)

where C̄Si
is the center of the cluster Si, k is the number of clus-

ters, and W (C) is the weight factor of the pixel C. Initially the
k-means algorithm starts with a set of k centers that are randomly
selected. At each iterative step, scan through all the pixels of the
original image and assign each pixel to the nearest center in the

4



Communications on Applied Electronics (CAE) - ISSN : 2394 - 4714
Foundation of Computer Science FCS, New York, USA
Volume 3 - No. 7, December 2015 - www.caeaccess.org

Fig. 6: LFD map of an image: (left) the original images and (right) their
LFD maps

sense of minimizing (9). Then the new centers are calculated as

C̄Si
=

∑
C∈Si

W (C)× C∑
C∈Si

W (C)
i = 1, 2, .., k (10)

The steps are repeated until the algorithm converges or the num-
ber of iterations reaches a specified value. Usually in the con-
ventional k-means algorithm the weight factor W (C) = 1 for
all pixels, therefore all pixels are treated equally regardless of
their spatial distribution.

The proposed color quantization algorithm follows the same
steps as the k-means algorithm except that the weight factor
W (C) of pixel C at the (i, j)th position in the original im-
age is equal to the inverse of its corresponding LFD value at
the (i, j)th position in the LFD map. In this way pixels are not
equally treated where pixels in the low activity (smooth) regions
are given larger weight (importance) than those pixels in the high
activity (busy) regions. Accordingly, more levels of colors will
be presented in low activity regions and this will not degrade
the quality of the image as the human eyes are less sensitive to
quantization errors in high activity regions than in low activity
regions. As a result, the perceived quality in low activity regions
will be improved after dithering techniques are applied as shown
in the next section. Fig. 7 shows the color quantization outputs
for the conventional k-means and the proposed algorithm for 16
and 32 colors. It is clear that the proposed algorithm allocates
more levels of colors to the gradient sky region than the con-
ventional k-means does to the same region for both 16 and 32
colors.

3.3 Pixel Mapping with Error Diffusion
To succeed in facing up to the problem of false contours in
the color quantized images, error diffusion technique within the
pixel mapping process is incorporated. In conventional systems

Fig. 7: Color quantization results of ‘Tree’ image. (a) The original image,
(b) LFD map of (a), (c) K-means 16 colors, (d) k-means 32 colors, (e)
Proposed method 16 colors, (f) Proposed method 32 colors.

for error diffusion, the pixels are chosen in raster ordering from
left to right and top to bottom. Each pixel is quantized and the
quantization error is propagated forward to the neighboring pix-
els that have not yet been quantized with a causal filter. One prob-
lem is associated with this approach that the structure in high ac-
tivity regions may be distorted due to the accumulated quantiza-
tion error (see Fig. 8(a)). To avoid unnecessarily dithering of high
activity regions, the pixels in high activity regions are masked us-
ing smooth-region map in a way that the Floyd-Steinberg error
diffusion filter [4] is applied only to pixels in low activity regions
where false contours in an image are most likely to occur. In this
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Fig. 8: Dithered quantization results of ‘Tree’ image. (a) k-means 16 col-
ors, (b) LFD map of original image ‘Tree’ image, (c) Proposed algorithm
16 colors, (d) flat-region map of original ‘Tree’ image (high activity re-
gions in white color and low activity regions in black color).

way false contours in low activity regions will be removed while
preserving the structure in high activity regions that is commonly
lost in high activity regions when applying dithering techniques.
The smooth-region map is created by thresholding the LFD map
using the Otsu’s global image threshold method [20]. Fig. 8(b)
and (d) show the LFD map of the ‘Tree’ image and its corre-
sponding smooth-region map respectively.

3.4 Results and Discussions
In Fig. 8(a) the full color image ‘Tree’ has been quantized
to 16 colors using the conventional k-means where the Floyd-
Steinberg error diffusion [4] has been incorporated within the
pixel mapping process. It is observed that the application of the
Floyd-Steinberg error diffusion causes the creation of color im-
pulses and some false contours remain visible in the sky region as
well as distorting structure in grass region. Those color impulses
and false contours are the result of insufficient color levels pre-
sented in the gradient sky region, while the distorted structure is
the result of unnecessarily dithering high activity regions where
false contours in an image are not apparent to the human eye. On
the other hand Fig. 8(c) shows the proposed color quantization
outputs of 16 colors. It is clear that the false contours are less vis-
ible in the sky region compared to the conventional k-means and
the result is free from color impulses. This is due to introducing
more color levels in gradient sky region than the conventional
k-means (see Fig. 7(c) and (e)). As a result, dithering in low ac-
tivity regions makes a pixel jump to another close palette color
for even small errors. This results a high alternation of palette
colors between neighboring pixels to give full illusion of smooth
gradation. At the same time, it may also be noted that structure
in the grass region is preserved by not performing dithering in
the high activity regions.

For the objective evaluation of the proposed method, two image
quality metrics have been used namely: the widely used peak

Fig. 9: Original images used for the different experiments. (a) Tree
(59974 colors), (b) Woman (31744 colors), (c) Flowers (47946 colors),
(d) House (154605 colors).

signal-to-noise ratio metric (PSNR) where a higher PSNR value
means that the distorted image is closer to the original, and the
structural similarity measure (SSIM) [33] to measure how close
is the structure of the resultant dithered quantized image to the
structure of the original image. Table 1 shows the performance
comparison of joint color quantization and dithering for the al-
gorithms: median-cut [8], k-means algorithm [13], and the pro-
posed method in terms of PSNR, and SSIM metrics for the test-
ing images in Fig. 9. The results show that the proposed method
produces quantized images that are perceptually closer to the
original images, and at the same time it preserves more structure
of the original images when compared with the other methods.

4. CONCLUSION
Color quantization is an important problem for many applica-
tions in graphics and multimedia where only a limited number
of colors can be displayed or printed simultaneously. In this pa-
per, two methods for color quantization are proposed to obtain
better results with minimum visual degradation after dithering
techniques are applied. Simulation results show that the pro-
posed methods give a remarkable improvement in the quality
of joint color quantization and dithering both subjectively and
objectively compared to the traditional quantization methods.
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