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ABSTRACT 

The need for effective and efficient Denial of Service (DoS) 

Detection System cannot be overemphasized. This position is 

as a result of a serious threat to the availability of internet 

services that limit and block legitimate users access by 

exhausting victim server’s resources or saturating stub 

networks access links to the internet services instead of 

subverting services. Hence the need for a supervised data 

learning techniques known as association rule mining which 

has the advantage of generating explainable rules was used to 

build a classifier for detecting some denial of service attacks, 

carry out a case study on International Knowledge Discovery 

and data Mining (KDD ’99) tools, intrusion detection dataset 

for benchmarking the design of the intrusion detection 

systems. The average classification rate for unpruned rules is 

63.16% while that of the pruned rules is 96.6%. The result 

revealed that pruned rule sets have better classification 

performance than the unpruned rule set. 

Keywords 
Intrusion detection system (IDS); Distributed Denial of 

Service (Ddos); Association rule; Knowledge Discovery 

Database (KDD); Rule Pruning 

1. INTRODUCTION 
Security of information is of utmost importance to 

organization striving to survive in a competitive marketplace. 

Network security has been an issue since computer networks 

became prevalent, most especially now that internet is 

changing the face of computing. As dependency on internet 

increases on daily basis for business transaction, so also cyber 

attacks by intruders who exploit flaws in internet architecture, 

internet protocol, operating systems and application software 

to carry out nefarious activities. Massive Internet worm 

outbreaks such as Slammer [8] Blaster [9] and Sasser [10] 

have shown that a large number of hosts that goes to  millions 

are patched lazily or are operated by security-unaware users. 

Such hosts can be compromised within a short time to run 

arbitrary and potentially malicious attack code transported in a 

worm or virus or injected through installed backdoors.  

Distributed denial of service (DDoS) use such poorly secured 

hosts as attack platform and cause degradation and 

interruption of Internet services, which result in major 

financial losses, especially if commercial servers are affected 

[6]). DDoS attacks pose a serious threat to the availability of 

Internet services. DDoS attacks consume resources associated 

with various network elements – e.g. Web servers, routers, 

firewalls, and hosts which impedes the efficient functioning 

and provisioning of services in accordance with their intended 

purpose[5]. One of the main reasons why DDoS is 

predominant on the Internet is as a result of the design of the 

Internet, current Internet design focuses on effectiveness in 

moving packets from the source to the destination and not on 

security of the packets. If one party in two-way 

communication (sender or receiver) misbehaves, it can do 

arbitrary damage to its peer. No one in the intermediate 

network will step in and stop it, because Internet is not 

designed to police traffic, consequences of this policy are the 

presence of IP spoofing and DDoS attacks [7]. 

A host of research works have been carried out on intrusion 

detection and prevention systems, majority of these researches 

are either rule-based or expert-system based. Their strengths 

depend largely on the ability of the security personnel that 

develops them.  The former can only detect known attack 

types and the latter is prone to generation of false positive 

alarms. This work makes a contribution using an intelligence 

technique known as machine learning techniques, it 

automatically learn from data and extract useful pattern from 

data as a reference for normal/attack traffic behaviour profile 

from existing data for subsequent classification of network 

traffic. 

2. RELATED WORKS 
Brignoli [2] worked on DDoS detection based on traffic self-

similarity estimation. This approach is a relatively new 

approach which is built on the notion that undisturbed 

network traffic displays fractal like properties. These fractals 

like properties are known to degrade in presence of abnormal 

traffic conditions like DDoS. Detection is possible by 

observing the changes in the level of self-similarity in the 

traffic flow at the target of the attack. 

Kevin and George [3] identified the first publicly available 

DDoS attacks tool, Trinoo, was based on UDP flood attack 

and master-slave communications (forcing "innocent" 

computers participate in the attack by planting in them 

remote-control programs). In the following years, few more 

tools were published – TFN (tribe flood network), TFN2K, 

and Stacheldraht ("Barbed wire" in German). 

William et al. [11], worked on detection of DoS attacks 

through the polling of Remote Monitoring (RMON) capable 

devices. The researchers developed a detection algorithm for 

simulated flood-based DoS attacks that achieved a high 

detection rate and low false alarm rate. The detection 

algorithm relies not only on the raw RMON variables but also 

on relationships between the variables to achieve this 

detection rate. The researcher also indicate how the 

introduction of RMON2 variables and an accurate network 

map can be used to improve DoS detection accuracy and 

reduce false alarms by identifying the sources of specific 

DoS-related traffic. The approach is less expensive than many 

commercially available solutions, requiring no special 
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purpose hardware. It is more accurate than commonly used 

univariate statistical approaches and it is fast, requiring only 

the computation of packet variables ratios and processing by a 

feed-forward neural network. 

Yeonhee and Youngseok [12] focused on a scalability issue of 

the anomaly detection and introduced a Hadoop-based DDoS 

detection scheme to detect multiple attacks from a huge 

volume of traffic. Different from other single host-based 

approaches trying to enhance memory efficiency or to 

customize process complexity, the method leverages Hadoop 

to solve the scalability issue by parallel data processing. From 

experiments, it showed that a simple counter-based DDoS 

attack detection method could be easily implemented in 

Hadoop and shows its performance gain of using multiple 

nodes in parallel. It is expected that a signature-based 

approach could be well suited with Hadoop. 

3. ARCHITECTURE OF THE 

PROPOSED SYSTEM 
The structure of the proposed architecture for real time 

detection of DDoS intrusion detection via association rule 

mining is shown in Figure 1, it is divided into two phases: 

learning and testing.  The network sniffer processed the 

tcpdump binary into standard format putting into learning, 

during the learning phase, duplicate records as well as 

columns with same data were expunged from the record so as 

to reduce operational cost. A supervised data learning 

techniques known as association rule mining which has the 

advantage of generating explainable rules was then used to 

build a classifier for detecting some denial of service attacks 

4. ASSOCIATION RULE MINING 
Following the original definition by Agrawal and Sikrant 

(1994) the problem of association rule mining is defined as 

follow: 

𝑙𝑒𝑡𝐼 =  𝑖1, 𝑖2, ……… . . , 𝑖𝑛    (3.1) 

be a set of n binary attributes called items. 

𝑙𝑒𝑡𝐷 =   𝑡1, 𝑡2,…………..…,𝑡𝑛    (3.2) 

be a set of transactions called the database.  

Each transaction in D has a unique transaction ID and 

contains a subset of the items in I. A rule is defined as an 

implication of the form   

 X → Y where X, Y Iand X   Y = ø . (3.3) 

To select interesting rules from the set of all possible rules, 

constraints on various measures of significance and interest 

can be used. The best-known constraints are minimum 

thresholds on support and confidence. 

The supportsupp(X) of an itemsetX is defined as the 

proportion of transactions in the data set which contain the 

itemset.  

supp(X) = itemsetX / Total no of dataset (3.4) 

The confidence of a rule is defined as 

.  (3.5) 

Building of a classification model using association rule 

required a categorized training data sets. Patterns of denial of 

service were extracted using this learning technique on the 

training sets before being subjected to testing. For example, 

considering sampled network traffic data in Table 3.1, the 

network intrusion detection could be {Udp, Sf,}  

{Teardrop} meaning that if udp and sf are present in network 

traffic data, the traffic is most probably a teardrop Dos attack . 

Table 3.1: Example of traffic data 

transaction ID Protocol service Flag Attacks/Label 

Traffic 1 Udp Smtp Sf Teardrop 

 Traffic 2 Tcp Http Sf Smurf 

Traffic 3 Udp Http So Neptume 

Traffic 4 Icmp Private Sf Teardrop 

Traffic 5 Tcp Smtp So Land 

4.1 Association Rules Mining Classifier 

Dataset 
The feasibility of this approach was demonstrated using the 

Knowledge Discovery and Data Mining 1999 (KDD ’99) 

dataset. This dataset was acquired from nine weeks of raw  

Transfer Control Protocol  dump data for a local area 

network(LAN) simulating a typical United State Air force 

LAN. The dataset is made up of 41 attributes: seven (7) out of 

these attributes are discrete and the remaining are continuous 

type. 

 

5. EXPERIMENTAL SETUP AND 

RESULTS 
The dataset used for building the Association classifier, 

consisted of 37,079 records, among which there are 99 

(.267%) teardrop, 36,944 (99.64%) smurf, 20 (0.05%) pod, 15 

(0.04%) Neptune and 1 (0.0027%) land connections.  The 

testing data from the training dataset which were used to test 

the performance of the classifier is made up of 400 records 

out of which there are 98 (24.5%) teardrop, 266 (66.5%) 

smurf, 20 (5%) pod, 15 (3.75%) Neptune and 1  (0.025%) 

land. Another 300 records test data were extracted from an 

entirely different dataset from the training dataset, this dataset 

is made of 40 (13.3%) Pod, 107 (35.6%) smurf, 9 (3%) 

teardrop, 43(14.3%) Neptune (14.3%), 9 (3%) land, 33 (11%) 

apache2, 21(7%) normal, 25(8.3%) mailbomb and 8 (2.6%) 

snmpgetattack 

 

The training and test dataset were pre-processed by: 

 

i. Checking any irregularity in the data set (making sure all 

the data set has the same constant tuple), and 

ii. Removal of attribute that has same constant value, a total 

of 21 columns (attributes) that has constant value were 

removed, leaving us with 21 columns including the 

classmark which are used for the training. Table 5.1 

shows the 21 attributes used to build the classifier and 

attributes that were not used.  

 

Table 5.1: Used and unused attributes for the classifier 

building 

Attributes used to build the 

classifier  

Attributes not used   

(Deleted attributes) 
1,2,3,4,5,7,8,23,24,25,26,29,30, 

32,33,34,35,36,37,38,39 

6,9,10,11,12,13,14,15,16,17,18 

19,20,21,22,27,28,31,40,41 

5.1 Rule Generation 
 Association rules are usually required to satisfy a user-

specified minimum support and a user-specified minimum 
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confidence at the same time. Association rule generation is 

usually split up into two separate steps: 

i. First, minimum support is applied to find all 

frequent itemsets in a database.  

ii. Second, these frequent itemsets and the minimum 

confidence constraint are used to form rules.  

Finding all frequent itemsets in a database is difficult since it 

involves searching all possible itemsets (item combinations). 

In order to reduce computational time for the rule generation, 

only the 21 attributes in table 5.1 were used for rules 

generation. 

5.2 Rules Pruning to obtain Classifier 

Model 
Association Generates lots of rule, most of the rules are 

irrelevant, hence need to prune the rule set and come up with 

relevant and important rules that will improve the 

classification process. The following steps were followed in 

other to prune and obtain relevant rules that will be used for 

the classification model: 

i. All rules with confidence less than 80% were 

removed 

ii. All duplicate and single attribute rules were 

removed 

iii. All identical rules pointing to difference attacks 

were removed 

5.3 Result of Implementation with 

Training Dataset 
The initial rules generate and pruned rules were then used to 

classify the training set as well as testing data set. Tables 5.2, 

5.3, 5.4 and 5.5 show the confusion matrix obtained 

Association rule mining with 20 attributes. 

Table 5.2: Confusion matrix obtained from one and two 

attribute combination from training dataset for unpruned 

and pruned rules 

A N S P T L 

 UP P UP P UP P UP P UP P 

N(16) 12 1

4  

0 0 0 0 0 0 4 2 

S( 264) 0 0 26

3  

26

4  

0 0 1 0 0 0 

P(20) 0 0 19 0 0 2

0 

0 0 1 0 

T(99) 0 0 99 0 0 0 0 9

9 

0 0 

L(1) 0 0 0 0 0 0 0 0 1 1 

A = Attacks, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, UP= 

Unpruned, P= pruned 

Table 5.3: Confusion matrix obtained from one, two and 

three attributes combination from training dataset for 

unpruned and pruned rules 

A N S P T L 

 UP P UP P UP P U

P 

P UP P 

N(16) 12 15  0 0 0 0 0 0 4 1 

S( 264) 0 0 264  264  0 0 0 0 0 0 

P(20) 0 0 19 0 1 20 0 0 0 0 

T(99) 0 0  0 0 0 0 99 99 0 0 

L(1) 0 0 0 0 0 0 0 0 1 1 

A = Attacks, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, UP= 

Unpruned, P= pruned 

Table 5.4: Confusion matrix obtained from one, two, three 

and four attributes combination from training dataset  for 

unpruned and pruned rules 

A N S P T L 

 UP P UP P U

P 

P U

P 

P UP P 

N(16) 14  16  0 0 0 0 0 0 2 0 

S( 264) 0 0 264  264  0 0 0 0 0 0 

P(20) 0 0 19 0 1 20 0 0 0 0 

T(99) 0 0 0 0 0 0 99 99 0 0 

L(1) 0 0 0 0 0 0 0 0 1 1 

A = Attacks, N = Neptune, S = Smurf, P = Pod, T = Teardrop, L = Land, UP= 

Unpruned, P= pruned 

Table 5.5: Confusion matrix obtained from one, two, 

three, four and five attributes combination from training 

dataset for unpruned and pruned rules. 

A N S P T L 

 UP P UP P U

P 

P U

P 

P UP P 

N(16) 14  16  0 0 0 0 0 0 2 0 

S( 264) 0 0 264  264  0 0 0 0 0 0 

P(20) 0 0 19 0 1 20 0 0 0 0 

T(99) 0 0 0 0 0 0 99 99 0 0 

L(1) 0 0 0 0 0 0 0 0 1 1 

A = Attacks, N = Neptune, S = Smurf, P = Pod, T = Teardrop, L = Land, UP= 

Unpruned, P= pruned 

The results in Tables 5.2, 5.3, 5.4 and 5.5 were obtained from 

classification of training data set with raw unpruned and 

pruned  rule sets, from the tables, the degree of accuracy of 

classification of smurf attack with the unpruned rule sets 

ranges  between 99.6% to 100% while Pod attacks 

classification could not be classify correctly by the 

classification model, about 95% pod attacks were classified as 

smurf attacks and the rest were classified as Pod. 98%  of 

teardrop and 100% of  land attacks were also correctly 

classified,    20% of Neptune attacks were classified correctly 

with unpruned rules generated from one, two and three 

attributes, unpruned rules generated from four and five 

network attributes improved the classification of  Neptune 

attacks  to 65%.  

The pruned rule sets has a better classification performance 

than the unpruned rule sets, all the attacks except Neptune and 

pod recorded 100% correct classification, 90% of pod attacks 

were correctly classifier with single attributes rules and 100% 

correctly classified with two and more attributes rule sets. 

Neptune attacks recorded 93% classification with combination 

of 2 and 3 attributes rule set and 100% with combination of 

2,3,4 and 5 attributes rules set.  

Pruned rules set has an higher classification performance than 

the unpruned rules set as shown in Table 5.6 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 3– No.7, December 2015 – www.caeaccess.org 

 

27 

Table 5.6:  `Summary of the Percentages of Correctly 

Classified Attacks with unpruned and pruned rules set 

 N (%) S (%) P (%) T(%) L (%) 

 UP P UP P UP P UP P UP P 

1, 2 75 87.5 99.6 100 0 100 0 100 100 100 

1,2, 3 75 93.75 100 100 5 100 100 100 100 100 

1,2,3, 4 87.5 100 100 100 5 100 100 100 100 100 

1,2.3.4, 

5 

87.5 100 100 100 5 100 100 100 100 100 

N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, UP= Unpruned,   

P= pruned 

5.4 Result of Implementation with Test 

Dataset 
The association rule classifier was tested with test data that 

did not belong to the same network with the training dataset, 

there are three (3) (Appache, Mail bomb, Snmpget attacks in 

the test data that were not present in the training set. Figures 

5.7a, 5.7b, 5.8a, 5.8b, 5.9a, 5.9b, 5.10a and 5.10b   shows the 

confusion matrix table obtained from the association rule 

classification of the test data. 

Table 5.7a: confusion matrix obtained from one and two 

attribute combination from test dataset (unprune rules) 

 P S T N L N A M S U 

P (40) 0 0 0 0 40 0 0 0 0 0 

S (107) 0 107 0 0 0 0 0 0 0 0 

T (9) 0 0 7 0 2 0 0 0 0 0 

N(44) 0 0 0 0 44 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N (22) 0 3 0 3 0 16 0 0 0 0 

A (34) 0 0 0 0 34 0 0 0 0 0 

M(26) 0 0 0 0 26 0 0 0 0 0 

S(8) 0 8 0  0 0 0 0 0 0 

P = Pod, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, A= 

Apache2, M= Mailbomb, S= Snmpget, U= Unknown 

Table 5.7b: confusion matrix obtained from one and two 

attribute combination from test dataset (prune rules) 

 P S T N L N A M S U 

P (40) 40 0 0 0 0 0 0 0 0 0 

S (107) 0 107 0 0 0 0 0 0 0 0 

T(9) 0 2 7 0 0 0 0 0 0 0 

N (44) 0 0 0 44 0 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N (22) 0 0 0 2  0 20 0 0 0 0 

A(34) 0 1 0 1 0 0 0 0 0 32 

M (26) 0 10 0 0 0 0 0 0 0 16 

S(8) 0 3 0  0 0 0 0 0 5 

P = Pod, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, A= 

Apache2, M= Mailbomb, S= Snmpget, U= Unknown 

 

 

 

Table 5.8a: confusion matrix obtained from one, two and 

three attribute combination from test dataset (unpruned 

rules) 

 P S T N L N A M S U 

P (40) 0 40 0 0 0 0 0 0 0 0 

S (107) 0 107 0 0 0 0 0 0 0 0 

T(9) 0 0 9 0 0 0 0 0 0 0 

N (44) 0 0 0 0 44 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N(22) 0 2 0 3 0 17 0 0 0 0 

A (34) 0 0 0 0 34 0 0 0 0 0 

M(26) 0 0 0 0 26 0 0 0 0 0 

S(8) 0 8 0  0 0 0 0 0 0 

P = Pod, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, A= 

Apache2, M= Mailbomb, S= Snmpget, U= Unknown 

Table 5.8b: confusion matrix obtained from one, two and 

three attribute combination from test dataset (pruned 

rules) 

 P S T N L N A M S U 

P (40) 38 2 0 0 0 0 0 0 0 0 

S(107) 0 107 0 0 0 0 0 0 0 0 

T(9) 0 0 9 0 0 0 0 0 0 0 

N(44) 0 0 0 44 0 0 0 0 0 0 

L(9) 0 0 0 0 9 0 0 0 0 0 

N(22) 0 0 0 2  0 20 0 0 0 0 

A(34) 0 1 0 1 0 0 0 0 0 32 

M(26) 0 10 0 0 0 0 0 0 0 16 

S(8) 0 3 0  0 0 0 0 0 5 

P = Pod, N = Neptune, S = Smurf,  P = Pod, T = Teardrop, L = Land, A= 

Apache2, M= Mailbomb, S= Snmpget, U= Unknown 

Table 5.9a: confusion matrix obtained from one, two, 

three and four attribute combination from test dataset 

(unpruned rules) 

 P S T N L N A M S U 

P (40) 0 40 0 0 0 0 0 0 0 0 

S(107) 0 107 0 0 0 0 0 0 0 0 

T(9) 0 0 9 0 0 0 0 0 0 0 

N(44) 0 0 0 10 34 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N(22) 0 2 0 3 0 17 0 0 0 0 

A(34) 0 0 0 0 34 0 0 0 0 0 

M (26) 0 0 0 0 26 0 0 0 0 0 

S(8) 0 0 8  0 0 0 0 0 0 

P = Pod, N = Neptune, S = Smurf,  T = Teardrop, L = Land, A= Apache2, M= 

Mailbomb, S= Snmpget, U= Unknown 
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Table 5.9b: confusion matrix obtained from one, two, 

three and four attribute combination from test dataset 

(pruned rules) 

 P S T N L N A M S U 

P (40) 38 2 0 0 0 0 0 0 0 0 

S(107) 0 107 0 0 0 0 0 0 0 0 

T(9) 0 0 9 0 0 0 0 0 0 0 

N(44) 0 0 0 44 0 0 0 0 0 0 

L(9) 0 0 0 0 9 0 0 0 0 0 

N(22) 0 0 0 2  0 20 0 0 0 0 

A(34) 0 1 0 1 0 0 0 0 0 32 

M(26) 0 10 0 0 0 0 0 0 0 16 

S(8) 0 3 0  0 0 0 0 0 5 

P = Pod, N = Neptune, S = Smurf,   T = Teardrop, L = Land, A= Apache2, M= 

Mailbomb, S= Snmpget, U= Unknown 

Table 5.10a: confusion matrix obtained from one, two, 

three, four and five attribute combination from test 

dataset (unpruned rules) 

 P S T N L N A M S U 

P(40) 40 0 0 0 0 0 0 0 0 0 

S (107) 0 107 0 0 0 0 0 0 0 0 

T (9) 0 0 9 0 0 0 0 0 0 0 

N (44) 0 0 0 10 34 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N (22) 0 2 0 3  0 17 0 0 0 0 

A (34) 0 0 0 0 34 0 0 0 0 0 

M (26) 0 0 0 0 26 0 0 0 0 0 

S(8) 0 8 0  0 0 0 0 0 0 

P = Pod, N = Neptune, S = Smurf,   T = Teardrop, L = Land, A= Apache2, M= 

Mailbomb, S= Snmpget, U= Unknown 

 

Table 5.10b: confusion matrix obtained from one, two, 

three, four and five attribute combination from test 

dataset (prune rules) 

 P S T N L N A M S U 

P(40) 38 2 0 0 0 0 0 0 0 0 

S (107) 0 107 0 0 0 0 0 0 0 0 

T (9) 0 0 9 0 0 0 0 0 0 0 

N (44) 0 0 0 14 0 0 0 0 0 0 

L (9) 0 0 0 0 9 0 0 0 0 0 

N (22) 0 0 0 2  0 20 0 0 0 0 

A (34) 0 1 0 1 0 0 0 0 0 32 

M (26) 0 10 0 0 0 0 0 0 0 16 

S(8) 0 3 0  0 0 0 0 0 5 

P = Pod, N = Neptune, S = Smurf,   T = Teardrop, L = Land, A= Apache2,  

M= Mailbomb, S= Snmpget, U= Unknown 

The results in tables 5.7a, 5.8a, 5.9a, 5.10a and 5.11a were 

obtained from classification of test data set with the unpruned 

rules. From the tables, Pod attacks were classified as Teardrop 

and smurf attacks. Smurf and Teardrop attacks were 100%  

and 88%  classified  correctly respectively,  all Neptune 

attacks were  wrongly classified as Land attacks, all Land 

attacks were correctly classified, between 84% of Normal 

traffic were classified correctly. 94% and 6% of Apache 

attack were classified as Land and Neptune attacks 

respectively. All Smnpget attacks were either classified as 

smurf or Teardrop attacks. 

The results in tables 5.7b, 5.8b, 5.9b, 5.10b and 5.11b were 

obtained from classification of test data set with the raw 

pruned rules. 2, 3, 4,and 5 attributes. Pod, Smurf   Teardrop, 

Neptune and Land  attacks were classified correctly, while 

Apache, mailbomb and snmpget attacks were classified as 

either Unknown, Smurf or Teardrop attacks. Table 5.12 shows 

the summary of all the correctly classified attacks. 

Table 5. 12: Summary Correctly Classified Attacks from 

the Test Dataset 

Table P  

(%) 

S 

(%) 

T 

(%) 

N 

(%) 

L 

(%) 

N 

(%) 

A 

(%) 

M 

(%) 

S 

(%) 

4.7b 0 96 0 22.5 77.7 91 0 0 0 

4.8b 0 100 88 100 100 91 0 0 0 

4.9 95 100 100 100 100 91 0 0 0 

4.10b 95 100 100 100 100 91 0 0 0 

4.11b 95 100 100 100 100 91 0 0 0 

P = Pod, N = Neptune, S = Smurf,   T = Teardrop, L = Land, A= Apache2,  

M= Mailbomb, S= Snmpget, U= Unknown 
 

All the attacks present in the test dataset which were not used 

for training of the association rule classifier were classified as 

other attacks in test data and unknown attacks with unpruned 

rule, the pruned rule respectively. Tables 5.13 and 5.14 shows 

how they were classified. 

Table 5.13: Classification of Attacks not Present in the 

Test Data (unpruned Rule). 

 Pod Smurf Teardrop Neptune Land 

Apache   1(2.9%) 1(2.9%) 34((100%) 

Mailbomb     26(100%) 

Snmpget   8(100%)   

Table 5.14: Classification of Attacks not Present in the 

Test Data (prune Rule). 

 Pod Smurf Tear

drop 

Neptune Land Unknown 

Apache  2(6%)    32(94.1%) 

mailbomb  10(38.5%)    16(61.5%) 

Snmpget  3(62.5%)    5(62.5%) 

6. CONCLUSION  
In this paper, we propose a technique, an association rule 

based algorithm, developed for mining known-patterns. It 

provides methods of improving intrusion detection systems to 

ascertain the degree of accuracy using two types of datasets. It 

also reduces computational time for the rule generation by 

excluding constant value in the KDD dataset used for rule 

generation. It finally prunes the rule set and come up with 

relevant and important rules that will improve the 

classification process. 
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Fig. 3.1 Architecture of Association Rule Intrusion Detection System 
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