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ABSTRACT 

In this paper, a heuristic algorithm of possibilistic clustering 

based on fuzzy graph decomposition is proposed. For the 

purpose, concepts of fuzzy graph and fuzzy tolerance relation 

are considered and basic definitions of the heuristic approach 

to possibilistic clustering are described. An application of the 

proposed algorithm to the Tamura’s portrait data set is 

provided and some concluding remarks are stated. 
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1. INTRODUCTION 
Some notes on fuzzy approach to cluster analysis are 

presented in the first subsection of the section. The second 

subsection includes a brief review of investigations in the area 

of graph-theoretical approach to clustering. 

1.1 Preliminary Remarks 
Determining a partition of given sample data is an important 

part in data analysis tasks. Clustering methods use a 

mathematical model based on similarity measure to determine 

a suitable partition of the data set. In fuzzy clustering the data 

is not only partitioned in a number of clusters, but each object 

is assigned a degree of membership for each cluster. 

Heuristic methods, hierarchical methods and objective 

function-based methods are main approaches in fuzzy 

clustering. In objective function-based clustering the 

mathematical model is stated in form of an objective function 

that evaluates the partition of data with respect to the 

membership degrees and the underlying similarity or 

dissimilarity measure. Different assumptions and constraints 

lead to a variety of basic clustering concepts. If the objective 

function is differentiable, necessary conditions for the 

membership degrees and other cluster parameters used in the 

distance or similarity measure can be derived in order to 

optimize the objective function. The resulting equations are 

then alternatively applied in an algorithm to determine the 

data fuzzy partition [1]. 

A possibilistic approach to clustering was proposed by 

Krishnapuram and Keller [2] and the approach can be 

considered as a special case of fuzzy approach to clustering 

because all methods of possibilistic clustering are objective 

function-based methods. On the other hand, constraints in the 

possibilistic approach to clustering are less strong than 

constraints in the fuzzy objective function-based approach to 

clustering and values of the membership function of a 

possibilistic partition can be considered as typicality degrees. 

So, the possibilistic approach to clustering is more general and 

flexible approach to clustering than the fuzzy approach. 

Objective function-based approach in fuzzy clustering is most 

common and widespread approach. However, heuristic 

algorithms of fuzzy clustering display low level of complexity 

and high level of essential clarity. Some heuristic clustering 

algorithms are based on a definition of the cluster concept and 

the aim of these algorithms is cluster detection conform to a 

given definition. Such algorithms are called algorithms of 

direct classification or direct clustering algorithms [3]. A 

heuristic approach to possibilistic clustering is proposed in 

[4]. 

1.2 Related Works 
The problem of finding structures in graphs is an area that has 

been applied with success to topics as diverse as social 

networks, the internet and different military applications, to 

name a few. The problem was considered in detail, for 

example, by Schaeffer [5] and Fortunato [6]. 

Since the fundamental Zadeh’s [7] paper was published, fuzzy 

set theory has been applied to many areas and new concepts 

were introduced. In particular, fuzzy graphs were considered 

by Kaufmann [8] and Rosenfeld [9]. So, fuzzy graph-based 

clustering procedures were elaborated by different 

researchers. 

For example, the method of classification developed from the 

creation of the subclasses up to their fusion which implies the 

use of a proximity graph built according to a graduated 

hierarchy [10]. The method was called unsupervised fuzzy 

graph clustering and the corresponding UFGC-algorithm is 

proposed in [10]. 

On the other hand, an algorithm for hierarchical clustering 

based on fuzzy graph connectedness algorithm is proposed in 

[11]. The algorithm applies fuzzy et theory to hierarchical 

clustering method so as to discover clusters with arbitrary 

shape. It first partitions the data sets into several sub-clusters 

using a partitioning method, and constructs a fuzzy graph of 

sub-clusters by analyzing the fuzzy-connectedness degree 

among sub-clusters. By computing the  -cut graph, the 

connected components of the fuzzy graph can be obtained, 

hence resulting the desired clustering. 

The main goal of the present paper is the detailed 

consideration of the fuzzy graph-theoretical clustering 

procedure in the framework of the heuristic approach to 

possibilistic clustering. For this purpose, a short consideration 
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of fuzzy tolerance relations and fuzzy graphs is presented, 

basic definitions of the heuristic approach to possibilistic 

clustering are considered, the general plan of the clustering 

procedure is proposed, an illustrative example is given and 

preliminary conclusions are formulated. 

2. A PROPOSED ALGORITHM FOR 

FUZZY GRAPH CLUSTERING 
Fuzzy tolerance relations and fuzzy graphs are considered in 

brief in the first subsection of the section. The second 

subsection includes a consideration of basic concepts of the 

heuristic approach to possibilistic clustering. A general plan 

of the proposed FG-AFC-algorithm is presented in the third 

subsection of the section. 

2.1 Fuzzy Tolerances and Fuzzy Graphs 
Let },...,{ 1 nxxX   be the initial set of elements and 

]1,0[:  XXT  some binary fuzzy relation on 

},...,{ 1 nxxX   with ]1,0[),( jiT xx , Xxx ji  ,  

being its membership function. Fuzzy tolerance is the fuzzy 

binary intransitive relation which possesses the symmetry 

property ),(),( ijTjiT xxxx   , Xxx ji  ,  and the 

feeble reflexivity property ),(),( iiTjiT xxxx   , 

Xxx ji  , .  

The  -level 


T  of the fuzzy relation T  is defined as the set 

of ordered pairs of objects XXxx ji ),(  at which 

 ),( jiT xx , where 10   . In other words, the  -

level 


T  of the fuzzy relation T  can be defined as 

}),(|),{( 
  jiTji xxXXxxT . 

Let X  be a finite universe and T  be a fuzzy relation on X  

with ),( jiT xx  being its membership function. The  -

level fuzzy relation )( 
T  of the fuzzy relation T  on the 

universe X  is defined as 

  ),(),(,),(
)()( jiTjiTji xxxxTxxT 

 


, where 

10   . So, the membership function ),(
)( jiT xx


  of 

the  -level fuzzy relation )( 
T  can be defined as follows:  
















 




 ),(,0

),(),,(
),(

)(

jiT

jiTjiT

jiT
xxif

xxifxx
xx ,            (1) 

where ]1,0( . The definition of the  -level fuzzy 

relation )( 
T  was proposed in [4]. 

A fuzzy graph, which was considered by Kaufmann [8] and 

Rosenfeld [9], is a weighted graph. There is a fuzzy tolerance 

graph ),( TXG  , where },...,{ 1 nxxX   is the set of 

vertices and T  is fuzzy tolerance on X . 

Let ),( TXG   is a fuzzy tolerance graph, ),( jiT xx  is 

membership function of T , and 


T  is the  -level of T . 

So, a usual graph ),(
  TXG   is the  -level of the 

fuzzy tolerance graph ),( TXG  . 

An  -level fuzzy graph ),( )()(   TXG   can be defined 

as a fuzzy tolerance graph, where },...,{ 1 nxxX   is the set 

of vertices and )( 
T  is the  -level fuzzy tolerance on X .  

Let 10 10  Z    be an ordered 

sequences of threshold values. Thus, we have an ordered 

sequence of fuzzy graphs 

)()()()( 01  GGGG
Z

 


, because we have 

the ordered sequence of fuzzy tolerances 

)()()()( 01  TTTT
Z

 


 and TT )( 0
 [4].  

Let 
cAA


  ,,1
 are subsets of vertices, XAA ml , , 

},,1{, cml  ,  ml AA , ml  , and XA
c

l

l 


 

1

 . 

So, a connected fuzzy sub-graph ),( )()(   TAG ll   is a 

component of the  -level fuzzy graph ),( )()(   TXG  . 

That is why a family of connected fuzzy sub-graphs 

),( )()(   TAG ll  , cl ,,1 , )(

1

)(   GG
c

l

l 


 is a 

classification on the level ]1,0( .  

2.2 Basic Concepts of the Heuristic 

Approach to Possibilistic Clustering 
Let us remind basic concepts of a heuristic method of 

possibilistic clustering which was proposed in [4]. The 

essence of the heuristic approach to possibilistic clustering is 

that the sought clustering structure of the set of objects is 

formed based directly on the formal definition of fuzzy cluster 

and possibilistic memberships are determined also directly 

from the values of the pair wise similarity of objects. 

Let },...,{ 1 nxxX   be the initial set of objects. Let T  be a 

fuzzy tolerance on X  and   be  -level value of T , 

]1,0( . Columns or lines of the fuzzy tolerance matrix are 

fuzzy sets },...,{ 1 nAA . Let },...,{ 1 nAA  be fuzzy sets on X

, which are generated by a fuzzy tolerance T . The  -level 

fuzzy set })(|))(,{()(   iAiAi

l xxxA ll , ],1[ nl  is 

fuzzy  -cluster or, simply, fuzzy cluster. So 
ll AA )( , 

]1,0( , },,{ 1 nl AAA   and li  is the membership 

degree of the element Xxi   for some fuzzy cluster 
lA )( , 

]1,0( , ],1[ nl . Value of   is the tolerance threshold 

of fuzzy clusters elements.  

The membership degree of the element Xxi   for some 

fuzzy cluster 
lA )( , ]1,0( , ],1[ nl  can be defined as a 
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



 


otherwise

Axx l

iiA
li

l

,0

),( 
 ,                 (2) 

where an  -level })(|{   iAi

l xXxA l , ]1,0(  

of a fuzzy set 
lA  is the support of the fuzzy cluster 

lA )( . So, 

condition )( )(

ll ASuppA    is met for each fuzzy cluster 

lA )( , ]1,0( , ],1[ nl . Membership degree can be 

interpreted as a degree of typicality of an element to a fuzzy 

cluster. 

Let T  is a fuzzy tolerance on X , where X  is the set of 

objects, and },...,{ )(

1

)(

nAA   is the family of fuzzy clusters for 

some ]1,0( . The point 
ll

e A  , for which 

li
x

l

e
i

 maxarg , 
l

i Ax  ,                 (3) 

is called a typical point of the fuzzy cluster 
lA )( , ]1,0( , 

],1[ nl . A fuzzy cluster 
lA )(  can have several typical 

points. That is why symbol e  is the index of the typical point. 

Let ]}1,0(,2,,1|{)( )()(  
 ncclAXR l

zc  be a 

family of fuzzy clusters for some value of tolerance threshold 

 , ]1,0( , which are generated by some fuzzy tolerance 

T  on the initial set of elements },...,{ 1 nxxX  . If a 

condition 

0
1




c

l

li , Xxi                    (4) 

is met for all fuzzy clusters )()()( XRA zc

l 
  , cl ,1 , 

nc  , then the family is the allotment of elements of the set 

},...,{ 1 nxxX   among fuzzy clusters 

}2,,1,{ )( ncclAl   for some value of the tolerance 

threshold  . It should be noted that several allotments 

)()( XR zс


 can exist for some tolerance threshold  . That is 

why symbol z  is the index of an allotment. 

Allotment ]}1,0(,,1|{)( )(  
 nlAXR l

I  of the set of 

objects among n  fuzzy clusters for some tolerance threshold 

]1,0(  is the initial allotment of the set },...,{ 1 nxxX  . 

In other words, if initial data are represented by a matrix of 

some fuzzy T  then lines or columns of the matrix are fuzzy 

sets XAl  , nl ,1  and  -level fuzzy sets 
lA )( , cl ,1

, ]1,0(  are fuzzy clusters. These fuzzy clusters constitute 

an initial allotment for some tolerance threshold   and they 

can be considered as clustering components. 

If some allotment },,1|{)( )()( ncclAXR l

zс  


, 

]1,0(  corresponds to the formulation of a concrete 

problem, then this allotment is an adequate allotment. In 

particular, if a condition 

XA
c

l

l 



1

                    (5) 

and a condition 

0)(  ml AAcard  , 
ml AA )()( ,  , ml  , ]1,0(      (6) 

are met for all fuzzy clusters 
lA )( , cl ,1  of some allotment 

},,1|{)( )()( ncclAXR l

zс  


 for a value ]1,0( , 

then the allotment is the allotment among fully separate fuzzy 

clusters. 

Fuzzy clusters in the sense of definition (2) can have an 

intersection area. If the intersection area of any pair of 

different fuzzy clusters is an empty set, then conditions (5) 

and (6) are met and fuzzy clusters are called fully separate 

fuzzy clusters. Otherwise, fuzzy clusters are called 

particularly separate fuzzy clusters and },,0{ nw   is the 

maximum number of elements in the intersection area of 

different fuzzy clusters. For 0w  fuzzy clusters are fully 

separate fuzzy clusters. Thus, the conditions (5) and (6) can be 

generalized for a case of particularly separate fuzzy clusters. 

So, a condition 

cXRcard

XRAXcardAcard

zc

zс

l
c

l

l






))((],1,0(

),(),()(

)(

)()(

1








                (7) 

and a condition  

]1,0(,

,,,)( )()(









ml

AAwAAcard mlml

                 (8) 

are generalizations of conditions (5) and (6). Obviously, if 

0w  in conditions (7) and (8) then conditions (5) and (6) 

are met.  

The adequate allotment )()( XR zс


 for some value of tolerance 

threshold ]1,0(  is a family of fuzzy clusters which are 

elements of the initial allotment )(XRI


 for the value of   

and the family of fuzzy clusters should satisfy the conditions 

(7) and (8). So, the construction of adequate allotments 

},,1|{)( )()( ncclAXR l

zс  


 for every   is a trivial 

problem of combinatorics. 

Allotment },1|{)( )( clAXR l

P  


 of the set of objects 

among the minimal number c , nc 2  of fully separate 

fuzzy clusters for some tolerance threshold ]1,0(  is the 

principal allotment of the set },...,{ 1 nxxX  . 

Several adequate allotments can exist. Thus, the problem 

consists in the selection of the unique adequate allotment 

)(XRc


 from the set B  of adequate allotments, 

)}({ )( XRB zc

 , which is the class of possible solutions of 

the concrete classification problem. The selection of the 

unique adequate allotment )(XRc


 from the set 
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)}({ )( XRB zc

  of adequate allotments must be made on the 

basis of evaluation of allotments. In particular, the criterion 

 
 


c

l

n

i

li

l

zc c
n

XRF
l

1 1

)(

1
)),(( 

                (9) 

where c  is the number of fuzzy clusters in the allotment 

)()( XR zс


 and )( l

l Acardn  , )()()( XRA zc

l 
   is the 

number of elements in the support of the fuzzy cluster 
lA )( , 

can be used for evaluation of allotments.  

Maximum of criterion (9) corresponds to the best allotment of 

objects among c  fuzzy clusters. So, the classification 

problem can be characterized formally as determination of the 

solution )(XRc


 satisfying 

)),((maxarg)( )(
)()(




XRFXR zc

BXR
c

zc 

  .              (10) 

The problem of cluster analysis can be defined in general as 

the problem of discovering the unique allotment )(XRc


, 

resulting from the classification process and detection of fixed 

or unknown number c  of fuzzy clusters can be considered as 

the aim of classification. 

2.3 A Plan of the FG-AFC-Algorithm 
Let introduce some important concepts. Let 

),( )()(   TXG   is the  -level fuzzy graph for some 

value of tolerance threshold ]1,0(  and fuzzy sub-graphs 

),( )()(   TAG ll  , cl ,,1  are components of the  -

level fuzzy graph ),( )()(   TXG  . So, the condition (5) 

and the condition (6) are met.  

On the other hand, let },,{)( )(

1

)(

)( c

c AAXR


  





 be the 

unique adequate allotment among c  fully separate fuzzy 

clusters for the value ]1,0( . Obviously, that a condition 

   c

l

l

c AcardXRcard 1}{)( 

 


 is met. If a condition 

   ll AcardASuppcard
  )( )( , },,1{ cl   is met, 

then the allotment )(
)(

XRc

  is the corresponding allotment 

for the  -level fuzzy graph ),( )()(   TXG  .  

Let ),( )()(   TAG ll  , },,1{ cl   is a component of the 

 -level fuzzy graph ),( )()(   TXG   for some value of 

tolerance threshold ]1,0( . Obviously, that a fuzzy 

cluster )(
)(

)( XRA c

l 
 




  corresponds to the component 

),( )()(   TAG ll  . Thus, constructing  -level fuzzy 

graphs )( 
G  and corresponding allotments )(

)(
XRc

  for 

different values of tolerance threshold ]1,0(  is the aim 

of classification.  

The corresponding FG-AFC-algorithm for detecting 

components of  -level fuzzy graphs )( 
G  and the 

corresponding allotments )(
)(

XRc

  is a six-step procedure 

of classification.  

 

1. Calculate  -level values of the fuzzy tolerance T  

and construct the sequence 

10 10  Z    of  -

levels; set 0: ; 

2. Construct the  -level fuzzy graph )( 
G ; 

3. The following condition is checked: 

if a condition Z  is met 

then the following condition is checked: 

if a condition is met  ),( jiT xx  for 

some arc ),( ji xx , },...,1{, nji   

then the arc should be deleted from the 

fuzzy graph )( 
G  

else stop; 

4. The following condition is checked: 

if the fuzzy graph )( 
G  can be divided into 

unknown number c  of components 

),( )()(   TAG ll  , cl ,,1  

then go to step 5 

else set 1:    and go to step 2; 

5. Construct allotment )(
)(

XRc

  among unknown 

number c  of fully separated fuzzy clusters as 

follows: 

5.1 Set 1l  

5.2 Construct fuzzy sub-relation 
lT )( 

 for a 

       component ),( )()(   TAG ll  , },,1{ cl   

5.3 Columns or lines of the fuzzy sub-relation 
lT )( 

 

      matrix are fuzzy sets },...,{ )()1( jll AA  on 

     XAl 


; 

5.4 Calculating the cardinality )( )(klAF  of each 

       fuzzy set 
)(klA , },,1{ jk   according to a 

       formula 



n

i

iA

kl xA kl

1

)( )()( )(F , 

      },,1{ jk  , 
l

i Ax


 ; 

5.5 The following condition is checked: 
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        if for some unique fuzzy set 
)(klA  a condition 

     )(maxarg )()(

)(

kl

A

jl AA
kl
F  is met  

        then the fuzzy set 
)(klA  should be selected as 

       a basic fuzzy set for constructing the fuzzy 

       cluster 
lA )( 

 and the element of the basic fuzzy 

      set 
)( jlA  for which  )(maxarg )( iAx

l xkl

i

  , 

     
l

i Ax


 is the typical point of the fuzzy 

      cluster 
lA )( 

 

        else the fuzzy cluster 
lA )( 

 is not exists and 

        stop; 

5.6 The membership degree of the element 

       
l

i Ax


  for the fuzzy cluster 
lA )( 

 should be 

       constructed as follows: 

       if the element 
l

i Ax


  is a vertex of the 

       shortest path ),( i

l x  

then the value of the membership degree li  

of 

       the element 
l

i Ax


  for the fuzzy cluster 

       
lA )( 

is equal to the value of minimal value 

of 

        the membership function ),(
)(

jiT
xxl



  of 

arc 

       from the shortest path ),( i

l x ; 

5.7 The following condition is checked: 

       if the membership degree assigned to each 

       element 
l

i Ax


  

       then the fuzzy cluster 
lA )( 

 is formed and 

      )(
)(

)( XRA c

l 
 




  

else  if all elements 
l

i Ax


  are not 

 verified 

then 1:  ll  and go to step 5.2 

else go to step 6; 

6. The following condition is checked: 

if the unique allotment )(
)(

XRc

  which 

correspond to the  -level fuzzy graph )( 
G  is 

constructed 

then the  -level fuzzy graph )( 
G  and the 

corresponding allotment )(
)(

XRc

  are a solution 

of the classification problem for the value  ; set 

1:    and go to step 2; 

else the -level fuzzy graph )( 1
G  and the 

corresponding allotment )(
)( 1 XRc

  for the value 

1  are resulting solution of the classification 

problem and stop. 

It should be noted, that the set B  of adequate allotments is 

not constructed in the FG-AFC-algorithm and the criterion (9) 

is not used in the clustering procedure. 

So, a family of  -level fuzzy graph ),( )()(   TXG   and 

corresponding allotments )(
)(

XRc

  for different values of 

the tolerance threshold ]1,0(  is a result of classification 

process. 

The proposed FG-AFC-algorithm should be explained by 

illustrative examples. 

3. EXPERIMENTAL RESULTS 
A simple example is considered in the first subsection of the 

section. The second subsection includes a consideration of 

application of the proposed FG-AFC-algorithm to Tamura’s 

portrait data set. 

3.1 A Simple Illustrative Example  
Let us consider a simple numerical example [12]. Let 

},...,{ 51 xxX   be the initial set of elements and T  is a 

fuzzy tolerance relation on X . So, ),( TXG   is a fuzzy 

tolerance graph and ),( jiT xx , 5,,1, ji  is 

membership function of T . The fuzzy graph ),( TXG   is 

shown in Fig. 1. 

 

Fig 1: An initial fuzzy graph 

The corresponding fuzzy tolerance relation T  is presented in 

Table 1. 

Table 1. An initial fuzzy tolerance relation 

T  
1x  2x  3x  4x  5x  

1x  1.0     

2x  0.8 1.0    
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3x  0.0 0.4 1.0   

4x  0.1 0.0 0.0 1.0  

5x  0.2 0.9 0.0 0.5 1.0 

So, an ordered sequence of values of tolerance threshold 

19.08.05.04.02.01.00   can be 

constructed. 

The initial graph is divided into two components for the value 

of tolerance threshold 5.03  . So, the -level fuzzy graph 

)( 
G  is shown in Fig. 2.  

 

Fig 2: An α-level fuzzy graph obtained from  

the FG-AFC-algorithm for the value α=0.5 

The allotment among two fully separated fuzzy clusters 

corresponds to the fuzzy graph. The fuzzy cluster 

 )9.0,(),5.0,(),0.1,(),8.0,( 5421

1

)5.0( xxxxA   corresponds 

to the first class and the object 2x  is the unique typical point 

1  of the fuzzy cluster. The fuzzy cluster  )0.1,( 3

3

)5.0( xA   

corresponds to the second class and the unique object which 

belongs to the class is its typical point, 
3

3 x .  

The corresponding allotment )(
)(

XRc

  for the value 

5.0  is presented in Fig. 3, where membership values of 

the first class are represented by ○ and membership values of 

the second class are represented by ■.  

 

Fig 3: Membership functions of two fuzzy clusters 

obtained from the FG-AFC-algorithm  

It should be noted, that the allotment among two fully 

separated fuzzy clusters obtained by the FG-AFC-algorithm is 

differ from the allotment among two fully separated fuzzy 

clusters obtained by the direct D-AFC(c)-algorithm of 

possibilistic clustering [4]. By executing the D-AFC(c)-

algorithm for 2c , the allotment was obtained for the 

tolerance value 1.0 . The corresponding allotment 

)(XRc


 is presented in Fig. 4, where membership values of 

the first class are represented by ○ and membership values of 

the second class are represented by ■. 

 

Fig 4: Membership functions of two fuzzy clusters 

obtained from the D-AFC(c)-algorithm  

By executing the FG-AFC-algorithm, the resulting graph was 

obtained for the value of tolerance threshold 8.04  . The 

graph is shown in Fig. 5. 

 

Fig 5: A resulting graph obtained from 

the FG-AFC-algorithm 

The allotment among three fully separated fuzzy clusters 

corresponds to the fuzzy graph. The fuzzy cluster 

 )9.0,(),0.1,(),8.0,( 521

1

)5.0( xxxA   corresponds to the first 

class and the object 1x  is the unique typical point 
1  of the 
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fuzzy cluster. The fuzzy cluster  )0.1,( 3

3

)5.0( xA   

corresponds to the second class and the unique object which 

belongs to the class is its typical point, 
3

3 x . The fuzzy 

cluster  )0.1,( 4

4

)5.0( xA   corresponds to the third class and 

the unique object 4x  is the typical point 
4  of the class. The 

result can be presented by the diagram of Fig. 6 where 

membership functions of three fuzzy clusters of the allotment 

)(
)(

XRc

  are shown. 

 

Fig 6: Membership functions of three fuzzy 

clustersobtained from the FG-AFC-algorithm  

Membership values of the first class are represented by ○, 

membership values of the second class are represented by ■ 

and membership values of the third class are represented by □ 

in Fig. 6. 

The allotment )(XRc


 obtained from the D-AFC(c)-

algorithm for 3c  is presented in Fig. 7.  

The allotment was obtained for the value of tolerance 

threshold 5.0 . Membership values of the first class are 

represented by ○, membership values of the second class are 

represented by ■ and membership values of the third class are 

represented by □ in Fig. 7. So, the allotment obtained from the 

FG-AFC-algorithm of fuzzy graph clustering is different from 

the allotment obtained by using the direct D-AFC(c)-

algorithm. 

 

Fig 7: Membership functions of three fuzzy clusters 

obtained from the D-AFC(c)-algorithm  

A performance of the proposed FG-AFC-algorithm can be 

explained by other illustrative example. 

3.2 An Example of Tamura’s Portrait Data 

Set  
Let us consider an application of the proposed FG-AFC-

algorithm to the classification problem for the following 

illustrative example. The problem of classification of family 

portraits coming from three families was considered by 

Tamura, Higuchi and Tanaka in [12]. The number of portraits 

was equal to 16 and the real portrait assignment among three 

classes is presented in Fig. 8. 

 

 

 

Fig 8: Real portraits classification 
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The data were originally analyzed in order to identify families 

with the technique of first transforming the matrix of a fuzzy 

tolerance into a matrix of a fuzzy similarity relation and then 

taking an appropriate  -level of the fuzzy similarity relation 

[12]. 

The partition proved to be obtained with  -level equal to 

6.0 . The partition identified the three families 

},,,,{ 1613861

1 xxxxxA  , },,,,{ 1411752

2 xxxxxA   and 

},,,,{ 15121094

3 xxxxxA  .  

However, person 3x  is not a member of any of the three 

families. The subjective similarities assigned to the individual 

pairs of portraits collected in the tabular format are presented 

in Table 2. 

The presented matrix of subjective similarities is the matrix of 

the fuzzy tolerance relation on },...,{ 161 xxX  . So, the 

initial fuzzy graph ),( TXG   is shown in Fig. 9 

 

Table 2. The matrix of subjective similarities 

T  
1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  11x  12x  13x  14x  15x  16x  

1x  1.0                

2x  0.0 1.0               

3x  0.0 0.0 1.0              

4x  0.0 0.0 0.4 1.0             

5x  0.0 0.8 0.0 0.0 1.0            

6x  0.5 0.0 0.2 0.2 0.0 1.0           

7x  0.0 0.8 0.0 0.0 0.4 0.0 1.0          

8x  0.4 0.2 0.2 0.5 0.0 0.8 0.0 1.0         

9x  0.0 0.4 0.0 0.8 0.4 0.2 0.4 0.0 1.0        

10x  0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.2 1.0       

11x  0.0 0.5 0.2 0.2 0.0 0.0 0.8 0.0 0.4 0.2 1.0      

12x  0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 1.0     

13x  0.8 0.0 0.2 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0    

14x  0.0 0.8 0.0 0.2 0.4 0.0 0.8 0.0 0.2 0.2 0.6 0.0 0.0 1.0   

15x  0.0 0.0 0.4 0.8 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.2 0.0 1.0  

16x  0.6 0.0 0.0 0.2 0.2 0.8 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.0 1.0 
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Fig 9: The initial fuzzy graph  

An ordered sequence of values of tolerance threshold 

18.06.05.04.02.00   can be constructed. The 

initial graph cannot be divided into components for values 

2.0  and 4.0 . The  -level fuzzy graph )( 
G  for 

the value 5.0 is shown in Fig. 10. Membership functions 

of corresponding fuzzy clusters of the obtained allotment are 

presented in Fig. 11.  

 

Fig 10: An α-level fuzzy graph obtained from the FG-AFC-algorithm for the value α=0.5 
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Fig 11: Membership functions of three fuzzy clusters obtained from the FG-AFC-algorithm,  

which correspond to the obtained allotment 

Membership values of the first class are represented by ○, 

membership values of the second class are represented by ■ 

and membership values of the third class are represented by 

  in Fig. 11. So, the fourth object is the typical point of the 

first class, the second object is the typical point of the second 

class, and the third object is the typical point of the third class. 

The second class is corresponds to Family 2 and all members 

of Family 1 is included to the first class. So, the first class is 

the union of the Family 1 and Family 3 and the third object is 

a unique element of the third class. So, the results obtained by 

the proposed FG-AFC-algorithm seem to be appropriate.  

It should be noted, that the allotment among particularly 

separated fuzzy clusters was obtained by using the D-AFC(c)-

algorithm for 3c  [4]. The corresponding membership 

functions are presented in Fig. 12.  

 

Fig 12: Membership functions of three partially separated fuzzy clusters obtained from the D-AFC-algorithm 

 

So, by executing the D-AFC(c)-algorithm for three classes, 

we obtain the allotment )(XRc


 among particularly separated 

fuzzy clusters, which corresponds to the result, is received for 

the tolerance threshold 2.0 . The ninth element of the set 

of objects is belonging to the second class and to the third 

class and membership values are equal, 4.09392   . 

4. FINAL REMARKS 
Results of experiments are summarized and discussed in the 

first subsection of the section. The second subsection deals 

with the perspectives on future investigations. 
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4.1 Discussions 
The novel FG-AFC-algorithm of possibilistic clustering is 

proposed in the paper. The algorithm is based on the idea of 

detecting of components of the initial fuzzy graph and 

constructing fuzzy clusters of the sought allotments from the 

components directly. So, the criterion of quality of the sought 

allotment is not used in the FG-AFC-algorithm. The results of 

application of the proposed FG-AFC-algorithm to the data 

sets show that the algorithm is an effective tool for solving the 

classification problem. 

4.2 Perspectives 
A transitive approximation of the initial fuzzy tolerance 

relation can be obtained by the TAGA-algorithm [13]. So, the 

TAGA-algorithm can be implemented into the FG-AFC-

algorithm and a new fuzzy graph-based heuristic algorithm of 

possibilistic clustering can be elaborated.  
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