

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.2, January 2016 – www.caeaccess.org

12

Differential Evolution with Alternating Strategies: A

Novel Algorithm for Numeric Function Optimization

Mohammad
Shafiul Alam

Ahsanullah
University of Science

and Technology
Dhaka-1208,
Bangladesh

Md. Tawseef
Alam

Ahsanullah
University of Science

and Technology
Dhaka-1208,
Bangladesh

Farniba Khan
Ahsanullah

University of Science
and Technology

Dhaka-1208,
Bangladesh

A. A. Fattah
Islam

Ahsanullah
University of Science

and Technology
Dhaka-1208,
Bangladesh

Md. Rasel Kabir
Ahsanullah

University of Science
and Technology

Dhaka-1208,
Bangladesh

ABSTRACT

The Differential Evolution (DE) is a prominent meta-heuristic

algorithm that has been successfully employed to numerous

complex and diverse problems from the fields of mathematics,

science and engineering. DE belongs to the evolutionary

family of algorithms which is based on the Darwinian theory

of natural selection and evolution. DE maintains a population

of candidate solutions and uses the vector differences between

randomly picked candidate solution vectors to produce new,

improved solutions to advance its evolutionary optimization

process, generation by generation. This paper introduces a

novel DE-variant — the DE with Alternating Strategies

(DE-AS) and evaluates its performance using a number of

benchmark problems on numeric function optimization.

DE-AS effectively combines the exploitative and explorative

characteristics of five different DE-variants by randomly

alternating and executing these DE-variants in a single

algorithm. The experimental results indicate that DE-AS can

perform better than many other existing DE-variants on most

of the benchmark functions, in terms of both final solution

quality and convergence speed.

Keywords

Evolutionary algorithm, differential evolution, exploitation

and exploration, numeric function optimization.

1. INTRODUCTION
During the last few decades, several stochastic, heuristic and

meta-heuristic algorithms have emerged which showed

significant success to deal with many complex scientific,

mathematical and engineering problems, such as continuous

optimization [1]–[3], combinatorial optimization [4], multi-

objective optimization [5], industrial process control [6],

engineering design [7], design of digital IIR filters [8], PID

controllers [9], machine learning [10] and so on [11]. The

Differential Evolution (DE) is a recently introduced

meta-heuristic algorithm which belongs to the family of

Evolutionary Algorithms (EAs) and is successfully employed

to many complex search and optimization problems.

Like most other population based meta-heuristic algorithms,

the DE is usually resilient and robust against premature

convergence and fitness stagnation. The reason is that the

population of individuals (i.e., candidate solutions) can

usually preserve sufficient amount of diversity and

explorative search capability, which is necessary to continue

the search space explorations around the locally optimal

points without being trapped anywhere around them.

However, the opposite scenario has also been observed (e.g.,

[12]–[14]) when the pool of candidate solutions completely

lost their diversity and the optimization procedure got stuck

around some locally optimal points, which is known as

‗premature convergence‘ in the literature of EAs. The reason

behind premature convergence is more exploitation at the cost

of reduced explorations. But increasing explorations at the

expense of decreased exploitations might not be the solution,

because this usually leads to slow and unacceptable

convergence speed. This is why a balance between the

explorative and exploitative operations is desired for good

results and satisfactory convergence speed.

There exist a number of variations of the differential evolution

algorithm, as briefly presented in the section 3. However, all

of them are biased, either towards more exploration or

towards more exploitation. This paper introduces a novel

DE-variant — the Differential Evolution with Alternating

Strategies (DE-AS) that involves five different DE-variants,

three exploitative and two explorative, to bring a balance

between explorations and exploitations. DE-AS deploys the

two explorative DE variants during the early phase of its

execution when more exploration is desired, followed by the

three exploitative DE-variants during the late generations

when exploitation and fine-tuning are necessary. Such an

approach tries to ensure a good balance between exploitations

and explorations in order to achieve improved results with

satisfactory convergence speed.

The rest of this paper is organized as follows. Section 2

explains the numeric function optimization problem. Section 3

briefly describes the DE algorithm, with its five different

strategies. Section 4 introduces the proposed DE-AS

algorithm. Section 5 presents the parameter settings and

experimental setup of all the different DE-variants and makes

a comparison of their performance on ten different complex,

high dimensional unimodal and multimodal functions. Finally,

section 6 concludes the paper with a brief discussion on

DE-AS, followed by some suggestions as directions for

further research with DE-AS.

2. FUNCTION OPTIMIZATION

PROBLEM
Many real world problems can be formulated as a function

optimization problem of the parameters that takes values from

some continuous domain, i.e., the continuous function

optimization problems. A continuous function optimization

problem can be formalized as follows.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.2, January 2016 – www.caeaccess.org

13

The objective is to find a vector xmin such that f (xmin) ≤ f (x)

for all xS. Here, the search space S is a bounded subset of

R
n
 and the objective function to be optimized is f (.), which is

an n-dimensional real valued function. The objective is to

optimize f (.) over its parameter x. Each element xi of the

vector x is a real valued variable, i.e., x = [x1, x2, … , xn]T

The task of numeric function optimization is generally

referred with many different names, such as real parameter

optimization, continuous optimization, or simply, numeric

optimization. However, all of them actually refer to the

general task of finding a solution across a real valued,

(usually) multi-dimensional search space such that the

solution gives the best value, i.e., minimum or maximum

value, of an objective function, depending on whether it is a

minimization or maximization task. This solution should have

not only the best objective function value around its local

neighborhood, but also the best objective value over all the

feasible solutions across the entire search space.

3. DIFFERENTIAL EVOLUTION
Like other population based meta-heuristic algorithms, DE

maintains a population of N vectors, each one representing a

candidate solution which is an n-dimensional real valued

vector xi = [xi1, xi2, …, xin]S. Here, S R
n
 and i = 1, 2,…,

N. This population of candidate solutions gradually evolves,

generation by generation, by the DE operators of mutation and

crossover, as explained later in this section. During every

generation, DE uses its mutation operation on every

individual vector xi,G (also called the target vector) to produce

the mutated vector vi,G, then crossover operation on the target

and mutated vectors to produce the trial vector ui,G, followed

by the selection operation on the target and trial vectors to

select the better one of them for the next generation.

Mutation Operation:

For each target vector xi,G (i.e., individual candidate solution

of current generation G), an associated mutated vector vi,G =

[vi1,G , vi2,G , …, vin,G] is produced by any of these strategies.

Strategy DE/rand/1:

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G)

Strategy DE/rand/2:

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G) + F . (xr

4
,G – xr

5
,G)

Strategy DE/best/1:

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G)

Strategy DE/best/2:

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G) + F . (xr

3
,G – xr

4
,G)

Strategy DE/current-to-best/1:

 vi,G = xi,G + F . (xbest,G – xi,G) + F . (xr
1
,G – xr

2
,G)

In these strategies, the indices r1, r2, r3, r4, r5 are random

integers which are different from the current index i and also,

different from each other. They are generated uniformly at

random from [1, N]. The vector xbest,G is the best individual of

the current generation G which has the highest fitness value.

The parameter F of the algorithm takes values from (0, 1+)

and acts as a scaling factor for the vector differences.

Crossover operation
DE employs the crossover operation after applying the

mutation operation on each individual. The crossover is done

between each pair of target vector xi,G and the corresponding

mutated vector vi,G to produce a new trial solution vector ui,G =

[ui1,G , ui2,G , …, uin,G] using the following method.

for j = 1, 2, …, n

 ,
,

,

, if 0,1 or =

, otherwise

randjij G
ij G

ij G

 rand CR j j

v
u

x

The CR above is the crossover rate, which is a user specified

parameter of DE in the range of [0,1). The random index jrand

is randomly picked from [1, n] to ensure that the trial vector

ui,G is different from the original vector xi,G (i.e., current target

vector) by at least one parameter.

Selection operation:
The selection procedure of DE is a simple, greedy fitness

based selection scheme between each pair of target vector and

its associated trial vector. The fitness value (i.e., reciprocal of

the function value for a function minimization problem) of

each trial vector ui,G is computed and compared with the

fitness value of the corresponding target vector xi,G. If the trial

vector ui,G has smaller or equal function value (for a

minimization problem) than the target vector xi,G, then the

trial vector ui,G will replace the original vector xi,G in the

population and xi,G will be deleted from the population.

Otherwise, the original target vector xi,G will be kept and the

trial vector ui,G will be deleted.

4. PROPOSED ALGORITHM: DE WITH

ALTERNATING STRATEGIES (DE-

AS)
This section introduces the novel DE-variant — Differential

Evolution with Alternating Strategies (DE-AS). The

motivation behind DE-AS is to balance between explorations

and exploitations to avoid premature convergence and to

locate the neighborhood of the global minimum. To achieve

this objective, DE-AS employs all the existing five

DE-variants, as mentioned in the previous section, during its

execution. In the following paragraph, a brief description of

the proposed DE-AS algorithm is presented.

The main approach of DE-AS is to combine all the five

different DE-variants, discussed in the previous section 3, and

to execute them randomly during its different generations.

The DE-variant that is to be executed in the current generation

is picked at random, either from the explorative DE-variants

or from the exploitative DE-variants, depending on the current

explorative/exploitative need. Among the five DE-variants,

the first two (DE/rand/1 and DE/rand/2) are mainly

explorative, while the remaining three (DE/best/1, DE/best/2

and DE/current-to-best/1) are exploitative. The need for

explorations is usually high during the initial generations.

This is why DE-AS randomly selects either of its two

explorative variants (i.e., DE/rand/1 and DE/rand/2) during

the first two-thirds of its runtime. For the final one-third of its

runtime, DE-AS randomly selects any of its three exploitative

variants (i.e., DE/best/1, DE/best/2 and DE/current-to-best/1).

To further clarify the DE-AS algorithm, a concrete example is

presented here. Suppose the predefined specified runtime for a

problem is set to 1500 generations. For this problem, DE-AS

Minimize f (x); subject to xS
 x

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.2, January 2016 – www.caeaccess.org

14

randomly picks either of DE/rand/1 or DE/rand/2 during the

first 1000 generations (i.e., two-thirds of its runtime). For the

last 500 generations (i.e., one-third runtime), DE-AS

randomly picks either of DE/best/1, DE/best/2 and

DE/current-to-best/1. The random selection of a DE-variant is

done regularly, during every generation. The randomization

during every generation ensures a balanced and proper mix of

explorations and exploitations across the total generations of

DE-AS.

5. EXPERIMENTAL STUDIES
To evaluate the performance of DE-AS and to compare it with

other DE-variants, this paper uses a standard benchmark suite

of numeric function optimization problems, consisting of four

unimodal and six multimodal, high dimensional functions

[1]–[3], [16]. Table 1 presents a brief overview on each of

these benchmark functions. More details on each function can

be found in [1]. All these benchmark functions are complex

and high dimensional functions. For the six multimodal

functions f5 – f10, the search algorithm must possess both

exploitative and explorative characteristics so that it can

explore the locally optimal points without being trapped

around any of them. Some of the multimodal functions can

have hundreds of local minima, even when the dimensionality

is just two or three. Their number of local optima increases

exponentially with the number of their dimensions, which

makes their optimization extremely difficult. For example, the

Schwefel 2.26 function f5 has exponentially many locally

minimal points which are very deep and very far from the

single global minimum. The Ackley function f7 has one

narrow global minimum basin, but with exponentially many

minor local minima. The Griewank function f8 has a

component creating linkage among the variables, which

complicates the search by perturbing any subset of the

variables. Any technique that tries to optimize each variable

separately without considering the others will fail for this

function. Since the number of local minima increases

exponentially with the number of dimensions, the high

dimensionality (i.e., D = 30) of all the multimodal functions

make them extremely difficult to be optimized by any

algorithm. Because of the existence of numerous locally

minimal points, the search algorithm may easily get trapped

around any of them, missing the single global minimum.

The experimental results of DE-AS and two other existing

DE-variants (i.e., the DE/best/1 and DE/rand/1) are presented

in Table 2. The common parameters of all three algorithms

are the population size N, which is set to 100. The no. of

maximum generations is different for the different functions,

as shown in Table 2. For the unimodal functions, which are

considered relatively easier than the multimodal functions, the

runtime is set to 1000 generations. For the multimodal

functions, the runtime is set to various generations, from 1500

to 9000 generations, based on the complexity of the functions.

The values in Table 2 indicate the error (i.e., the difference

between global minimum and the minimum possible function

value found by the DE-variants during the final generation).

The important observations on the results are summarized in

the following few points.

 Out of the 10 benchmark functions f1 – f10, DE-AS

performed best on as many as five functions, while

DE/best/1 performed best on four. On one function (f10),

all three algorithms performed equally well.

 In comparison to DE/rand/1, the performance of DE-AS

is almost always better (9 out of 10 functions) or similar

(only on one function, i.e., f10)

 For two functions — f4 and f7 all the three algorithms fail

to locate the global minimum and show signs of

premature convergence. However, DE-AS shows

somewhat better results on both these functions.

 An overall performance of the algorithms can be

compared based on their mean absolute error (MAE)

values over the unimodal functions f1 – f4 and multimodal

functions f5 – f10. The MAE of DE-AS is the smallest on

both the function families, which indicates that DE-AS is

overall best for both unimodal and multimodal functions.

 From the viewpoint of exploration vs. exploitation

phenomenon, the DE/best/1 variant is the most

exploitative one. This becomes apparent from its

extremely low error values for the relatively easier

unimodal functions (i.e., f1, f2) and some multimodal

functions (f6 and f8). This indicates DE/best/1 might be

more suitable than DE-AS for the task of fine tuning and

pinpointing the global minimum for easier functions.

However, DE-AS is more explorative and might be the

better choice for more complex multimodal functions.

To summarize the experimental findings, DE-AS is more

explorative than DE/best/1, and hence it shows best overall

performance (i.e., smaller MAE) over both unimodal and

multimodal functions. DE-AS consistently outperforms the

DE/rand/1 variant, showing superior results and higher

convergence speed for all the functions. However, the

DE/best/1 variant is found to be the most exploitative one and

shows best results by fine-tuning, but only on a few relatively

easier functions.

Table 1: The benchmark functions used in experimental studies. Here, D: dimensionality of the function, S: search space,

fmin: function value at the global minimum, C: function characteristics with the following values — U: Unimodal

M: Multimodal, S: Separable, N: Non-separable.

No Function C D S fmin

f1 Sphere US 30 [–100, 100]D 0

f2 Schwefel 1.2 UN 30 [–100, 100]D 0

f3 Schwefel 2.21 US 30 [–100, 100]D 0

f4 Rosenbrock UN 30 [–30, 30]D 0

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.2, January 2016 – www.caeaccess.org

15

f5 Schwefel 2.26 MS 30 [–500, 500]D –12569.5

f6 Rastrigin MS 30 [–5.12, 5.12]D 0

f7 Ackley MN 30 [–32, 32]D 0

f8 Griewank MN 30 [–600, 600]D 0

f9 Penalized MN 30 [–50, 50]D 0

f10 Penalized2 MN 30 [–50, 50]D 0

Table 2: Performance comparison of the proposed DE-AS and two other DE variants on the benchmark functions. The values

indicate the error (i.e., difference between global minimum and the minimum found function value by the DE variants) on the

different functions. The best performance (i.e., minimum error) on each function is marked with boldface font.

No fmin Generations DE/best/1 DE/rand/1 DE-AS
Best

Performance by

f1 0 1000 8.57e–37 1.39e–09 6.28e–14 DE/best/1

f2 0 1000 5.97e–34 1.87e–07 1.31e–11 DE/best/1

f3 0 1000 15.38 1.10 6.60e–01 DE-AS

f4 0 1000 24.07 21.87 19.51 DE-AS

f5 –12569.5 9000 7.69e+03 1.34e–02 4.15e–04 DE-AS

f6 0 5000 1.48e–201 2.31e–64 4.37e–86 DE/best/1

f7 0 1500 20.01 20.02 19.88 DE-AS

f8 0 2000 5.78e–82 6.48e–27 8.60e–35 DE/best/1

f9 0 1500 7.39e–14 7.40e–14 7.33e–14 DE-AS

f10 0 1500 2.61e–03 2.61e–03 2.61e–03 All Similar

Mean Absolute Error

(Unimodal Functions f1 – f4)
9.86e+00 5.74e+00 5.04e+00 DE-AS

Mean Absolute Error

(Multimodal Functions f5 – f10)
1.29e+03 3.34e+00 3.17e+00 DE-AS

6. CONCLUSION
This paper presents a novel variant of the standard differential

evolution algorithm — the Differential Evolution with

Alternating Strategies (DE-AS) and evaluates its performance

on a standard suite of benchmark problems on numeric

function optimization. The experimental results indicate that

DE-AS can achieve very good results, outperforming some

other existing DE-variants on most of the functions. There

might be several possible future research directions based on

this study. Firstly, some explorative meta-heuristic algorithms

can reliably locate the neighborhood of the global minimum

for more complex functions like f4 and f7. Hybridizing them

with DE-AS might make it more robust and resilient against

premature convergence and fitness stagnation. Secondly, the

DE-variants should be compared on easier low dimensional

functions to gain further insights on their strength and

weakness. This might help to hybridize them more effectively

for improved results and better resilience against premature

convergence. Thirdly, the possibility of improving the final

solution quality might be investigated by using an efficient

local searcher after the execution of DE-AS is over. This may

make its performance even better. Finally, DE-AS is applied

only on the continuous functions. It would be interesting to

study how well it can perform on many other existing

problems, especially the discrete and real world problems.

7. REFERENCES

[1] D. Karaboga and B. Basturk, On the performance of

artificial bee colony (ABC) algorithm, Applied Soft

Computing 8 (1) (2008) 687–697.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.2, January 2016 – www.caeaccess.org

16

[2] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[3] X. Yao, Y. Liu and G. Lin, ―Evolutionary programming

made faster‖, IEEE Transactions on Evolutionary

Computation 3 (2) (1999) 82–102.

[4] S. Sobti and P. Singla, Solving travelling salesman

problem using bee colony based approach, Int. Journal of

Engg. Research and Technology 2 (6) (2013) 186–189.

[5] K. Naidu, H. Mokhlis and A.H.A. Bakar, Multiobjective

optimization using weighted sum Artificial Bee Colony

algorithm for Load Freq. Control, Int. Jour. of Electrical

Power and Energy Systems 55 (2) (2014) 657–667.

[6] R. Mukherjee, D. Goswami and S. Chakraborty,

Parametric optimization of Nd:YAG laser beam

machining process using artificial bee colony algorithm,

Journal of Industrial Engineering, vol. 2013, Article ID

570250, 15 pages, 2013. DOI: 10.1155/2013/570250.

[7] H. Garg, Solving structural engineering design

optimization problems using an artificial bee colony

algorithm, Journal of Industrial and Management

Optimization, 10 (3) (2014) 777–794.

[8] Z. Zhao, D. Yin and Y. Jiang, Improved bee colony

algorithm based on knowledge strategy for digital filter

design, International Journal of Computer Applications,

47 (2) (2013) 241–248.

[9] A. Mishra, A. Khanna, N. Singh and V. Mishra, Speed

control of DC motor using bee colony optimization,

Universal Journal of Electrical and Electronic

Engineering 1 (3) (2013) 68–75.

[10] A. Karegowda and M. Darshan, Optimizing feed forward

neural network connection weights using artificial bee

colony algorithm, International Journal of Advanced

Research in Computer Science and Software Engineering

3 (7) (2013) 452–454.

[11] A. Bolaji, A. Khader, M. Betar and M. Awadallah, Bee

colony algorithm, its variants and applications: A survey,

Journal of Theoretical and Applied Technology 47 (2)

(2013) 434–459.

[12] T. Park and K. R. Ryu, A Dual population genetic

algorithm for adaptive diversity control, IEEE Trans.

Evolutionary Computation 14 (6) (2010) 865–884.

[13] R. K. Ursem, Diversity guided evolutionary algorithms,

in Proc. 7th Int. Conf. Parallel Problem Solving from

Nature (PPSN), 2002, pp. 462–474.

[14] J. Lampinen and I. Zelinka, On stagnation of the

differential evolution algorithm, in Proc. 6th Int. Mendel

Conf. Soft Computing, Brno, Czech Republic, 2000,

pp. 76–83.

[15] T. Bäck and H.–P. Schwefel, ―An overview of

evolutionary algorithms for parameter optimization‖,

Evolutionary Computation 1 (1) (1993) 1–23.

[16] W. Lee and W. Cai, A novel artificial bee colony

algorithm with diversity strategy, in Proc. 7th Int. Conf.

Natural Computation, 2011, pp. 1441–1444.

