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ABSTRACT 

The Differential Evolution (DE) is a prominent meta-heuristic 

algorithm that has been successfully employed to numerous 

complex and diverse problems from the fields of mathematics, 

science and engineering. DE belongs to the evolutionary 

family of algorithms which is based on the Darwinian theory 

of natural selection and evolution. DE maintains a population 

of candidate solutions and uses the vector differences between 

randomly picked candidate solution vectors to produce new, 

improved solutions to advance its evolutionary optimization 

process, generation by generation. This paper introduces a 

novel DE-variant — the DE with Alternating Strategies 

(DE-AS) and evaluates its performance using a number of 

benchmark problems on numeric function optimization. 

DE-AS effectively combines the exploitative and explorative 

characteristics of five different DE-variants by randomly 

alternating and executing these DE-variants in a single 

algorithm. The experimental results indicate that DE-AS can 

perform better than many other existing DE-variants on most 

of the benchmark functions, in terms of both final solution 

quality and convergence speed. 

Keywords 

Evolutionary algorithm, differential evolution, exploitation 

and exploration, numeric function optimization. 

1. INTRODUCTION 
During the last few decades, several stochastic, heuristic and 

meta-heuristic algorithms have emerged which showed 

significant success to deal with many complex scientific, 

mathematical and engineering problems, such as continuous 

optimization [1]–[3], combinatorial optimization [4], multi-

objective optimization [5], industrial process control [6], 

engineering design [7], design of digital IIR filters [8], PID 

controllers [9], machine learning [10] and so on [11]. The 

Differential Evolution (DE) is a recently introduced 

meta-heuristic algorithm which belongs to the family of 

Evolutionary Algorithms (EAs) and is successfully employed 

to many complex search and optimization problems.  

Like most other population based meta-heuristic algorithms, 

the DE is usually resilient and robust against premature 

convergence and fitness stagnation. The reason is that the 

population of individuals (i.e., candidate solutions) can 

usually preserve sufficient amount of diversity and 

explorative search capability, which is necessary to continue 

the search space explorations around the locally optimal 

points without being trapped anywhere around them. 

However, the opposite scenario has also been observed (e.g., 

[12]–[14]) when the pool of candidate solutions completely 

lost their diversity and the optimization procedure got stuck 

around some locally optimal points, which is known as 

‗premature convergence‘ in the literature of EAs. The reason 

behind premature convergence is more exploitation at the cost 

of reduced explorations. But increasing explorations at the 

expense of decreased exploitations might not be the solution, 

because this usually leads to slow and unacceptable 

convergence speed. This is why a balance between the 

explorative and exploitative operations is desired for good 

results and satisfactory convergence speed.  

There exist a number of variations of the differential evolution 

algorithm, as briefly presented in the section 3. However, all 

of them are biased, either towards more exploration or 

towards more exploitation. This paper introduces a novel 

DE-variant — the  Differential Evolution with Alternating 

Strategies (DE-AS) that involves five different DE-variants, 

three exploitative and two explorative, to bring a balance 

between explorations and exploitations. DE-AS deploys the 

two explorative DE variants during the early phase of its 

execution when more exploration is desired, followed by the 

three exploitative DE-variants during the late generations 

when exploitation and fine-tuning are necessary. Such an 

approach tries to ensure a good balance between exploitations 

and explorations in order to achieve improved results with 

satisfactory convergence speed. 

The rest of this paper is organized as follows. Section 2 

explains the numeric function optimization problem. Section 3 

briefly describes the DE algorithm, with its five different 

strategies. Section 4 introduces the proposed DE-AS 

algorithm. Section 5 presents the parameter settings and 

experimental setup of all the different DE-variants and makes 

a comparison of their performance on ten different complex, 

high dimensional unimodal and multimodal functions. Finally, 

section 6 concludes the paper with a brief discussion on 

DE-AS, followed by some suggestions as directions for 

further research with DE-AS. 

2. FUNCTION OPTIMIZATION   

PROBLEM  
Many real world problems can be formulated as a function 

optimization problem of the parameters that takes values from 

some continuous domain, i.e., the continuous function 

optimization problems. A continuous function optimization 

problem can be formalized as follows.  
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The objective is to find a vector xmin such that f (xmin) ≤ f (x) 

for all xS. Here, the search space S is a bounded subset of 

R
n
 and the objective function to be optimized is f (.), which is 

an n-dimensional real valued function. The objective is to 

optimize f (.) over its parameter x. Each element xi of the 

vector x is a real valued variable, i.e.,   x = [x1, x2, … , xn]T
 

The task of numeric function optimization is generally 

referred with many different names, such as real parameter 

optimization, continuous optimization, or simply, numeric 

optimization. However, all of them actually refer to the 

general task of finding a solution across a real valued, 

(usually) multi-dimensional search space such that the 

solution gives the best value, i.e., minimum or maximum 

value, of an objective function, depending on whether it is a 

minimization or maximization task. This solution should have 

not only the best objective function value around its local 

neighborhood, but also the best objective value over all the 

feasible solutions across the entire search space. 

3. DIFFERENTIAL EVOLUTION 
Like other population based meta-heuristic algorithms, DE 

maintains a population of N vectors, each one representing a 

candidate solution which is an n-dimensional real valued 

vector xi = [xi1, xi2, …, xin]S. Here, S R
n
 and i = 1, 2,…, 

N. This population of candidate solutions gradually evolves, 

generation by generation, by the DE operators of mutation and 

crossover, as explained later in this section. During every 

generation, DE uses its mutation operation on every 

individual vector xi,G (also called the target vector) to produce 

the mutated vector vi,G, then crossover operation on the target 

and mutated vectors to produce the trial vector ui,G, followed 

by the selection operation on the target and trial vectors to 

select the better one of them for the next generation.  

Mutation Operation:  

For each target vector xi,G (i.e., individual candidate solution 

of current generation G), an associated mutated vector vi,G = 

[vi1,G , vi2,G , …, vin,G] is produced by any of these strategies.  

Strategy DE/rand/1:  

vi,G = xr
1
,G + F . (xr

2
,G – xr

3
,G) 

Strategy DE/rand/2:  

vi,G = xr
1
,G + F . (xr

2
,G  – xr

3
,G) + F . (xr

4
,G  – xr

5
,G) 

Strategy DE/best/1:   

vi,G = xbest,G + F . (xr
1
,G – xr

2
,G) 

Strategy DE/best/2:  

vi,G = xbest,G + F . (xr
1
,G  – xr

2
,G) + F . (xr

3
,G – xr

4
,G) 

 

Strategy DE/current-to-best/1: 

  vi,G = xi,G + F . (xbest,G  – xi,G) + F . (xr
1
,G  – xr

2
,G) 

In these strategies, the indices r1, r2, r3, r4, r5 are random 

integers which are different from the current index i and also, 

different from each other. They are generated uniformly at 

random from [1, N]. The vector xbest,G is the best individual of 

the current generation G which has the highest fitness value. 

The parameter F of the algorithm takes values from (0, 1+) 

and acts as a scaling factor for the vector differences. 

 

Crossover operation 
DE employs the crossover operation after applying the 

mutation operation on each individual. The crossover is done 

between each pair of target vector xi,G and the corresponding 

mutated vector vi,G to produce a new trial solution vector ui,G = 

[ui1,G , ui2,G , …, uin,G] using the following method.  

for j = 1, 2, …, n 

 ,
,

,

, if 0,1 or =

, otherwise

randjij G
ij G

ij G

 rand CR j j

 

v
u

x

   
 


 

The CR above is the crossover rate, which is a user specified 

parameter of DE in the range of [0,1). The random index jrand 

is randomly picked from [1, n] to ensure that the trial vector 

ui,G is different from the original vector xi,G (i.e., current target 

vector) by at least one parameter.  

Selection operation: 
The selection procedure of DE is a simple, greedy fitness 

based selection scheme between each pair of target vector and 

its associated trial vector. The fitness value (i.e., reciprocal of 

the function value for a function minimization problem) of 

each trial vector ui,G is computed and compared with the 

fitness value of the corresponding target vector xi,G. If the trial 

vector ui,G has smaller or equal function value (for a 

minimization problem) than the target vector xi,G, then the 

trial vector ui,G will replace the original vector xi,G in the 

population and xi,G will be deleted from the population. 

Otherwise, the original target vector xi,G will be kept and the 

trial vector ui,G will be deleted.  

4. PROPOSED ALGORITHM: DE WITH 

ALTERNATING STRATEGIES (DE-

AS) 
This section introduces the novel DE-variant — Differential 

Evolution with Alternating Strategies (DE-AS). The 

motivation behind DE-AS is to balance between explorations 

and exploitations to avoid premature convergence and to 

locate the neighborhood of the global minimum. To achieve 

this objective, DE-AS employs all the existing five 

DE-variants, as mentioned in the previous section, during its 

execution. In the following paragraph, a brief description of 

the proposed DE-AS algorithm is presented. 

The main approach of DE-AS is to combine all the five 

different DE-variants, discussed in the previous section 3, and 

to execute them randomly during its different generations. 

The DE-variant that is to be executed in the current generation 

is picked at random, either from the explorative DE-variants 

or from the exploitative DE-variants, depending on the current 

explorative/exploitative need. Among the five DE-variants, 

the first two (DE/rand/1 and DE/rand/2) are mainly 

explorative, while the remaining three (DE/best/1, DE/best/2 

and DE/current-to-best/1) are exploitative. The need for 

explorations is usually high during the initial generations. 

This is why DE-AS randomly selects either of its two 

explorative variants (i.e., DE/rand/1 and DE/rand/2) during 

the first two-thirds of its runtime. For the final one-third of its 

runtime, DE-AS randomly selects any of its three exploitative 

variants (i.e., DE/best/1, DE/best/2 and DE/current-to-best/1).  

To further clarify the DE-AS algorithm, a concrete example is 

presented here. Suppose the predefined specified runtime for a 

problem is set to 1500 generations. For this problem, DE-AS 

Minimize f (x); subject to xS  
        x 
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randomly picks either of DE/rand/1 or DE/rand/2 during the 

first 1000 generations (i.e., two-thirds of its runtime). For the 

last 500 generations (i.e., one-third runtime), DE-AS 

randomly picks either of DE/best/1, DE/best/2 and 

DE/current-to-best/1. The random selection of a DE-variant is 

done regularly, during every generation. The randomization 

during every generation ensures a balanced and proper mix of 

explorations and exploitations across the total generations of 

DE-AS. 

5. EXPERIMENTAL STUDIES 
To evaluate the performance of DE-AS and to compare it with 

other DE-variants, this paper uses a standard benchmark suite 

of numeric function optimization problems, consisting of four 

unimodal and six multimodal, high dimensional functions  

[1]–[3], [16]. Table 1 presents a brief overview on each of 

these benchmark functions. More details on each function can 

be found in [1]. All these benchmark functions are complex 

and high dimensional functions. For the six multimodal 

functions f5 – f10, the search algorithm must possess both 

exploitative and explorative characteristics so that it can 

explore the locally optimal points without being trapped 

around any of them. Some of the multimodal functions can 

have hundreds of local minima, even when the dimensionality 

is just two or three. Their number of local optima increases 

exponentially with the number of their dimensions, which 

makes their optimization extremely difficult. For example, the 

Schwefel 2.26 function f5 has exponentially many locally 

minimal points which are very deep and very far from the 

single global minimum. The Ackley function f7 has one 

narrow global minimum basin, but with exponentially many 

minor local minima. The Griewank function f8 has a 

component creating linkage among the variables, which 

complicates the search by perturbing any subset of the 

variables. Any technique that tries to optimize each variable 

separately without considering the others will fail for this 

function. Since the number of local minima increases 

exponentially with the number of dimensions, the high 

dimensionality (i.e., D = 30) of all the multimodal functions 

make them extremely difficult to be optimized by any 

algorithm. Because of the existence of numerous locally 

minimal points, the search algorithm may easily get trapped 

around any of them, missing the single global minimum. 

The experimental results of DE-AS and two other existing 

DE-variants (i.e., the DE/best/1 and DE/rand/1) are presented 

in Table 2. The common parameters of all three algorithms 

are the population size N, which is set to 100. The no. of 

maximum generations is different for the different functions, 

as shown in Table 2. For the unimodal functions, which are 

considered relatively easier than the multimodal functions, the 

runtime is set to 1000 generations. For the multimodal 

functions, the runtime is set to various generations, from 1500 

to 9000 generations, based on the complexity of the functions. 

The values in Table 2 indicate the error (i.e., the difference 

between global minimum and the minimum possible function 

value found by the DE-variants during the final generation).  

The important observations on the results are summarized in 

the following few points.  

 Out of the 10 benchmark functions f1 – f10, DE-AS 

performed best on as many as five functions, while 

DE/best/1 performed best on four. On one function (f10), 

all three algorithms performed equally well.  

 In comparison to DE/rand/1, the performance of DE-AS 

is almost always better (9 out of 10 functions) or similar 

(only on one function, i.e., f10)   

 For two functions — f4 and f7 all the three algorithms fail 

to locate the global minimum and show signs of 

premature convergence. However, DE-AS shows 

somewhat better results on both these functions.  

 An overall performance of the algorithms can be 

compared based on their mean absolute error (MAE) 

values over the unimodal functions f1 – f4 and multimodal 

functions f5 – f10. The MAE of DE-AS is the smallest on 

both the function families, which indicates that DE-AS is 

overall best for both unimodal and multimodal functions.  

 From the viewpoint of exploration vs. exploitation 

phenomenon, the DE/best/1 variant is the most 

exploitative one. This becomes apparent from its 

extremely low error values for the relatively easier 

unimodal functions (i.e., f1, f2) and some multimodal 

functions (f6 and f8). This indicates DE/best/1 might be 

more suitable than DE-AS for the task of fine tuning and 

pinpointing the global minimum for easier functions. 

However, DE-AS is more explorative and might be the 

better choice for more complex multimodal functions.  

To summarize the experimental findings, DE-AS is more 

explorative than DE/best/1, and hence it shows best overall 

performance (i.e., smaller MAE) over both unimodal and 

multimodal functions. DE-AS consistently outperforms the 

DE/rand/1 variant, showing superior results and higher 

convergence speed for all the functions. However, the 

DE/best/1 variant is found to be the most exploitative one and 

shows best results by fine-tuning, but only on a few relatively 

easier functions.  

 

Table 1:  The benchmark functions used in experimental studies. Here, D: dimensionality of the function, S: search space,    

fmin: function value at the global minimum, C:  function characteristics with the following values — U: Unimodal 

M: Multimodal, S: Separable, N: Non-separable.  

No Function C D S fmin 

f1 Sphere US 30 [–100, 100]D 0 

f2 Schwefel 1.2 UN 30 [–100, 100]D 0 

f3 Schwefel 2.21 US 30 [–100, 100]D 0 

f4 Rosenbrock UN 30 [–30, 30]D 0 
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f5 Schwefel 2.26 MS 30 [–500, 500]D –12569.5 

f6 Rastrigin MS 30 [–5.12, 5.12]D 0 

f7 Ackley MN 30 [–32, 32]D 0 

f8 Griewank MN 30 [–600, 600]D 0 

f9 Penalized MN 30 [–50, 50]D 0 

f10 Penalized2 MN 30 [–50, 50]D 0 

 

Table 2:  Performance comparison of the proposed DE-AS and two other DE variants on the benchmark functions. The values 

indicate the error (i.e., difference between global minimum and the minimum found function value by the DE variants) on the 

different functions. The best performance (i.e., minimum error) on each function is marked with boldface font.  

No fmin Generations DE/best/1 DE/rand/1 DE-AS 
Best  

Performance by     

f1 0 1000 8.57e–37 1.39e–09 6.28e–14 DE/best/1 

f2 0 1000 5.97e–34 1.87e–07 1.31e–11 DE/best/1 

f3 0 1000 15.38 1.10 6.60e–01 DE-AS 

f4 0 1000 24.07 21.87 19.51 DE-AS 

f5 –12569.5 9000 7.69e+03 1.34e–02 4.15e–04 DE-AS 

f6 0 5000 1.48e–201 2.31e–64 4.37e–86 DE/best/1 

f7 0 1500 20.01 20.02 19.88 DE-AS 

f8 0 2000 5.78e–82 6.48e–27 8.60e–35 DE/best/1 

f9 0 1500 7.39e–14 7.40e–14 7.33e–14 DE-AS 

f10 0 1500 2.61e–03 2.61e–03 2.61e–03 All Similar 

Mean Absolute Error  

(Unimodal Functions f1 – f4) 
9.86e+00 5.74e+00 5.04e+00 DE-AS 

Mean Absolute Error  

(Multimodal Functions f5 – f10) 
1.29e+03 3.34e+00 3.17e+00 DE-AS 

 

6. CONCLUSION  
This paper presents a novel variant of the standard differential 

evolution algorithm — the Differential Evolution with 

Alternating Strategies (DE-AS) and evaluates its performance 

on a standard suite of benchmark problems on numeric 

function optimization. The experimental results indicate that 

DE-AS can achieve very good results, outperforming some 

other existing DE-variants on most of the functions. There 

might be several possible future research directions based on 

this study. Firstly, some explorative meta-heuristic algorithms 

can reliably locate the neighborhood of the global minimum 

for more complex functions like f4 and f7. Hybridizing them 

with DE-AS might make it more robust and resilient against 

premature convergence and fitness stagnation. Secondly, the 

DE-variants should be compared on easier low dimensional 

functions to gain further insights on their strength and 

weakness. This might help to hybridize them more effectively 

for improved results and better resilience against premature 

convergence. Thirdly, the possibility of improving the final 

solution quality might be investigated by using an efficient 

local searcher after the execution of DE-AS is over. This may 

make its performance even better. Finally, DE-AS is applied 

only on the continuous functions. It would be interesting to 

study how well it can perform on many other existing 

problems, especially the discrete and real world problems. 
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