

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, March 2016 – www.caeaccess.org

7

Effective and Faster Retrieval of Images from Large Database

by using Binary Tree Implemented with Map Reduce

Radhakrishnan B.
 Assistant Professor

Baselios Mathews II College of Engineering,
Sasthamcotta
Kollam, Kerala

Anver Muhammed K.M.
Systam Administrator

Baselios Mathews II College of Engineering,
Sasthamcotta
Kollam, Kerala

ABSTRACT

Effective searching of image from large image data base is

definitely a tedious task. Searching images linearly will cost a

lot of time. A distributed approach using map reduce concept

is proposed in this paper. Rather than comparing two images,

similarity features between images are searched for. The

features are stored in different machines which are

implemented using two dimensional binary tree. The tree

constitutes the root and leaf machine which des the

necessitated search.

General Terms

Large scale image searching, Big Data, Feature Detection,

Map

Keywords

CBIR, Map Reduce, Feature vectors.

1. INTRODUCTION
The future image databases will abandon the matching

paradigm of images , and rely on similarity searches. For

looking for similarity, there is no need to look for the

existence of a target image in the database. Rather, images are

searched with respect to similarity with the query, given a

fixed similarity criterion. Content-Base Image Retrieval

(CBIR) has been proposed in the early 1990’s.

Visual features are used in CBIR systems to represent the

image content. The information used during retrieval process

should have to be consistent, so CBIR systems are favorable

since the features are computed automatically. To search for

something similar, the query image is provided, or selects a

prototype image. The result is a list of images sorted in

decreasing values of similarity to the query image. Comparing

two images in the big image data is time consuming and

tedious task. So to reduce the complexity it is practical to

measure the similarity using low level image properties, ie

features in an image. This goal is usually performed using

index structures on the image content descriptors. The feature

vector of each image is stored and indexed in the data base.

So that at query time the feature vector of the query image is

computed and searched for the most similar feature in the data

base using the distance functions.

Fig 1. Result of query image in CBIR.

2. FEATURE EXTRACTION, SIMILARITY

MODELS AND QUERY PROCESSING.
The features should be “simple enough” to allow the design of

automatic extraction algorithms, yet “meaningful enough” to

capture the image content. Several CBIR systems used the

global features, like color and texture, which possess a rich

semantic value. Under this view, each image is typically

represented by a high-dimensional feature vector, whose

dimensionality depends on the number and on the type of

extracted features, and similarity between images is assessed

by defining a suitable distance function on the resulting

feature space.

2.1 Image Retrieval by Color Representation
In an image, Histogram is usually used to represent the

distribution of colors. Each pixel of an image I[x, y]

constitutes of three color channels I = (Ir,Ig,Ib), which

represents red, green, and blue components respectively.

Using a transformation matrix Tr these channels are

transformed, into hue, brightness, and saturation (HSV color

space) ie the natural components of color perception. The

three channels are then quantized, by using a quantization

matrix Qr, into a space consisting of a finite number of colors.

The nth component of the histogram, hr[n] is given by:

(1)

In Fig 2, color histogram are calculated for two images and

the similarity comparison is performed between the two

vectors p1 and p2.

1 ([,]
[]

0

r r

c

yx

yQ T I x y n
h m

otherwise

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, March 2016 – www.caeaccess.org

8

Fig 2. Color histogram extractions using 3 colors.

2.2 Image Retrieval by Texture Representation
Textures are homogeneous patterns or spatial arrangements of

pixels that cannot be sufficiently described by regional

intensity or color features. Based on the extraction of

information on coarseness, contrast, and direction the texture

properties can be globally represent. An alternate method to

represent texture property is Gabor filter. So, for each scale

and direction, the luminance information is transformed with

the corresponding Gabor filter and mean and variance are

computed for each scale and direction. A common Gabor

filter approach uses 5 directions and 3 scales, determining a

feature vector defined in a 3 dimensional space. Manhattan

distance is used to compare two images.

2.3 Image Retrieval by Shape Representation.
Shape representation techniques fall in two major categories:

1. The feature vector approach.

2. The shape through transformation approach.

The choice of a particular representation is driven by

application needs, like characteristics of the shapes being

analyzed, robustness against noise, and possibility of

indexing. The feature vector approach is widely employed in

information retrieval and allows effective indexing. A shape is

represented as a numerical vector using a parametric internal

method, or a parametric external method. The Euclidean

distance is the most used distance function to compare two

shapes. On the other hand, shapes can be also compared

computing the effort needed to transform one shape into the

other. In this case, similarity is computed by way of a

transformational distance. The main disadvantage of this

approach, however, is that it does not support indexing, due to

the fact that the method used to assess similarity does not

satisfies metric postulates.

3. MAP REDUCE
Map/Reduce [11] is a “programming model and an associated

implementation for processing and generating large data sets”.

In order to gain reasonable amount of time in case of large

computations, distributed processing using hundreds or

thousands of machines are required. But carefully distributing

the data requires effective partitioning and parallel

computation and Map/Reduce was designed for that. It lets the

programmer to write simple units of work as map and reduce

functions. A typical Map Reduce application consists of three

functions: map function, partition function and reduce

function. This frame work can then distribute the data to

different machines by partitioning the data and executing the

task in parallel.

map (k1, v1) -> k2,v2

reduce (k2, list(v2)) -> v3

Map Reduce can be done in the following steps:

1. The Map/Reduce frame work first splits the input data

into n pieces of fixed size and then passed to the

participating machines in the cluster.

2. One of the nodes in the cluster is the master and rest are

slaves which performs the work assigned by the master.

3. The slave reads the content and parses key/value pairs

and passes to the map function. The intermediate

key/value pairs are buffered in memory and periodically

written to local disk and partitioned by the partitioning

function and pass to reduce.

4. When a reduce worker has read all intermediate data, it

sorts it by the intermediate keys (k2) so that all

occurrences of the same key are grouped together.

5. Next, the reduce worker iterates over the sorted

intermediate data and for each unique intermediate key

encountered, it passes the key and the corresponding set

of intermediate values to the users reduce function. The

output of the reduce function is appended to a final

output file for this reduce partition.

6. When all map tasks and reduce tasks have been

completed, the master wakes up the user program. At this

point, the Map/Reduce call in the user program returns

back to the user code.

Fig 3.Map Reduce

The intermediate key/value pair from the map task is passed on to

a practitioner which in turns calls the practitioner function as

shown in Figure 4. It takes as input the key/value pair and

returns the reducer to which this key/value pair should be

sent. The number of partitions is equal to the number of reduce

tasks for the job. The amount of data received from each

mapper to a reducer and the total size of data to be processed

by the reduce task will only be known after the map tasks

complete execution.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, March 2016 – www.caeaccess.org

9

Fig 4. Map Reduce Job

4. IMPLEMENTING MAP REDUCE USING

TWO DIMENSIONAL BINARY SEARCH

TREE
The images are divided equally among different machines,

each building its own Tree from its chunk of images. The tree

is divided into a “root sub tree” that resides on a root machine,

and several “leaf sub trees”, each residing on a leaf

machine[7] as shown in Fig 5. At query time, the root

machine directs the features into the appropriate leaf machines

depending on where they exit the tree on the root machine.

The leaf machines compute the nearest neighbors within their

sub tree and send them back to the root machine, which

performs the counting and outputs the final sorted list of

images.

Fig.5. The Training MapReduce distributes the features

among the different machines.

Fig.6. In the query phase, the query image is first routed

through the Distribution Map reduce

The main advantage of distributed binary tree is that a single

feature will only go to a small subset of the leaf machines, and

thus the leaf machines will be processing multiple features at

the same time[10]. Most of the computations are done in the

leaf machines., When the number of leaf machines increases

the bottle neck can be avoided in the leaf machine by having

multiple copies of the root machine. The problems faced are:

(a) If the tree contains billions of features it is difficult to built

the tree since it does not fit on one machine. (b) In case, if

back tracking is needed how to perform that.

These two problems are solved by noticing the properties of

Trees: (a) The 2-D tree are not only built on one machine;

rather build a feature “distributor” that represents the top part

of the tree, on the root machine. Since it is not possible to fit

all the features in the database in one machine, simply

subsample the features and use as many as the memory of one

machine can take. (b) Backtracking is performed only in the

leaf machines, and not in the root. To decide which leaf

machines to go , test the distance to the split value, and if it is

below some threshold St, include the corresponding leaf

machine in the process[7].

The MapReduce architecture for implementing tree is as

shown in Figure 5 and Figure 6. It proceeds in two phases:

1. Training Phase: The Feature MapReduce directs the

training features into the different machines, which then

build the two dimensional binary tree with the features

assigned to it during the Index MapReduce.

2. Query Phase: The Distribution MapReduce directs the

query features into the appropriate machines, which

perform the Matching MapReduce.

Given M machines, the top part of the Kdt should have

⌈log2M⌉ levels, so that it has at least M leaves. The Feature

Map subsamples the input features by emitting one out of

every input skip features, and the feature Reduce builds the

tree with those features. The Index MapReduce builds the M

bottom parts of the tree, where the Index Map directs the

database features to the tree that is going to own it, which

using depth first search identifies as the first leaf of the top

part. The Index Reduce then builds the respective leaf trees

with the features it owns. At query time, the Distribution

MapReduce dispatches the query features to zero or more leaf

machines, depending on whether the distance to the split value

is below the threshold St . The Matching MapReduce then

performs the search in the leaf trees and the counting and

sorting of images.

5. EXPERIMENTAL RESULTS

Fig.7 Effect of Number Images. The X-axis depicts the

number of images in the database. The Y-axis depicts

precision@1 (left), CPU time (center), and Throughput

(right).

6. CONCLUSION
The image search system takes query input in the form of

image and retrieves relevant images from huge database. A

novel Internet Search system have been implemented which

only requires one-click user feedback. Rather than comparing

image as a whole, features are extracted. The Feature Vectors

are stored in a two dimensional binary tree thereby reducing

the searching time. Feature vectors are used to compare the

similarity between images which reduce the search time

tremendously. The search is performed in parallel using

distributed machines arranged using map reduce concept.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, March 2016 – www.caeaccess.org

10

7. REFERENCES
[1] Ilaria Bartolini, Paolo Ciaccia, an d Marco Patella. A

sound algorithm for region-based image retrieval using

an index. In proceedings of the 4th International

Workshop on Query Processing and Multimedia Issue in

Distributed Systems (QPMIDS’00), pages 930–934,

Greenwich, London, UK, September 2000.

[2] Ilaria Bartolini, Paolo Ciaccia, and Florian Waas.

Feedback Bypass: A new approach to interactive

similarity query processing. Technical Report CSITE-09-

01, CSITE–CNR, 2001. Available at URL http://www-

db.deis.unibo.it/ MMDBGroup/TRs.html.

[3] Stefan Berchtold, Daniel A. Keim, and Hans-Peter

Kriegel. The X-tree: An index structure for high-

dimensional data. In Proceedings of the 22nd

International conference on Very Large Data Bases

(VLDB’96), pages 28–39, Mumbai (Bombay), India,

September 1996.

[4] Christos Faloutsos, Will Equitz, Myron Flickner, Wayne

Niblack, Dragutin Petkovic, and Ron Barber. Efficient

and effective querying by image content. Journal of

Intelligent Information Systems, 3(3/4):231–262, July

1994.

[5] Yong Rui, Thomas S. Huang, Michael Ortega, and

Sharad Mehrotra. Relevance feedback: A power tool for

interactive content-based image retrieval. IEEE

transaction on Circuits and Systems for Video

Technology, 8(5):644–655, September 1998.

[6] Mohamed Aly, Mario Munich, and Pietro Perona.

Indexing in large scale image collections: Scaling

properties and benchmark. In WACV, 2011.

[7] Ulrich Buddemeier and Alessandro Bissaccoo.

Distributed kd-tree for efficient approximate nearest

neighbor search, 2009.

[8] M. Muja and D. Lowe. Fast approximate nearest

neighbors with automatic algorithm configuration. In

VISAPP, 2009.

[9] J. Zobel and A. Moffat. Inverted files for text search

engines. ACM Comput. Surv., 2006. ISSN 0360-0300.

[10] T.Cormen,C.Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms. McGraw- Hill, 2001.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:

Simplified data processing on large clusters. In OSDI,

2004.

[12] H. Jégou, M. Douze, C. Schmid, and P. Pérez.

Aggregating local descriptors into a compact image

representation. In CVPR, 2010.

[13] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,

and A.Y. Wu. An optimal algorithm for approximate

nearest neighbor searching. Journal of the ACM, 45:891–

923, 1998.

8. AUTHOR PROFILE
Radhakrishnan B is working as Asst. Professor in Computer

Science department. He has more than 14 years experience in

teaching and has published papers on data mining and image

processing. His research interests include image processing,

data mining, and image mining .

Anver Muhammed K.M is working as System Administrator

in Computer Science department. He has more than 10 years

experience in System Administration and Implementation. His

research interests include image processing and network

security.

http://www-db.deis.unibo.it/
http://www-db.deis.unibo.it/

