

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

30

New Test Pattern Generators for the BIST Pseudo-

Exhaustive Testing based on Coding Theory Principles

Mohamed H. El-Mahlawy
Visiting Associate Professor in

Military Technical College, Cairo, Egypt

Winston Waller
University of Kent, Canterbury,

Kent, CT2 7NT, UK

ABSTRACT

In this paper, an efficient algorithm to design convolved

LFSR/SR (Linear Feedback Shift Register / Shift Register) for

the pseudo-exhaustive testing (PET) is presented as far as the

lengths of the test set and hardware overhead are concerning.

In this algorithm, an efficient search to reduce the constraint

in the size of the shift register (SR) segment and makes an

efficient search to restrict on the number of feed forward

stages into two stages at most and no restriction on the size of

the SR segment. The residues are assigned such that minimum

hardware overhead is achieved. This search generates several

possible solutions for each case, from which the minimal

hardware solutions may be chosen. In addition, a new test

pattern generator (TPG) for the PET that bridges the gap

between convolved LFSR/SR and permuted LFSR/SR is

presented. It is considered to be the optimal pseudo-

exhaustive test pattern generator (PETPG) as far as the

lengths of the test set and hardware overhead are concerning.

An efficient residue assignment for the inputs of the CUT to

reduce the hardware overhead is presented. With small

number of permutations in the assigned residues, the chance

of obtaining efficient solutions may be increased. The

presented generator in this paper is considered the general

form of the PETPG. The simple LFSR/SR, the permuted

LFSR/SR, and convolved LFSR/SR are considered the special

case. The experimental results for all combinational

benchmark circuits [1] indicate the superiority of the

presented approach with respect to previous published works.

Keywords

Design for testability of VLSI design, pseudo-exhaustive

testing, pseudo-exhaustive test pattern generator, LFSR/SR,

permuted LFSR/SR, convolved LFSR/SR.

1. INTRODUCTION
Traditionally, the CUT is tested by the automatic test

equipment (ATE), which can store the applied test patterns

and the expected test response of the CUT [2-3]. In the Built-

In Self-Test (BIST), extra circuitry is added around the

original CUT to test itself [4]. The BIST incorporates a TPG

such as autonomous linear feedback shift register (ALFSR)

shown in Figure 1, and a test response compactor (TRC) such

as an LFSR shown in Figure 2 and an multi-input shift-

register (MISR) shown in Figure 3 [5-6]. Besides, a BIST

controller is incorporated into the system (core) logic to

realize self-test operations [4, 7]. Figure 1, Figure 2, and

Figure 3 have ci’s as binary constants, ci = 1 implies that a

connection exists, while ci = 0 implies that there is no

connection.

The basic BIST execution parallel BIST or test-per-clock

technique is shown in Figure 4. In the parallel BIST, the test

patterns are applied from the TPG and test responses are cap-

tured in the TRC (as MISR) every clock cycle [7-10].

Fig. 1: ALFSR as the TPG.

Fig. 2: LFSR as the TRC in serial BIST

Fig. 3: MISR as the TRC in parallel BIST.

Fig. 4: Basic parallel BIST architecture.

There are four main testing types in the BIST architecture.

They are exhaustive testing [4], pseudo-random testing [5-6],

deterministic testing [11-14], and the pseudo-exhaustive

testing (PET) [4, 15-18]. In this paper, the PET is selected to

study. The PET approach retains almost all benefits of an

exhaustive testing but usually requires far fewer test patterns.

The time required for the PET depends on the sizes of the

output cones, shown in Figure 5. For circuits with restricted

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

31

output dependency, the PET provides an alternative test

method. The choice of the PET depends on whether or not any

combinational circuit outputs depend on all of the circuit

inputs. If any circuit output depends on all of its inputs, a

partitioning (or segmentation) test technique must be used to

test these circuits [4, 16]. The PET reduces the testing time to

a feasible workable value.

Fig. 5: Segmentation approach in the PET.

2. PREVIOUS RESEARCH
Many single-test pattern generators were proposed for the

PET. Examples are syndrome driver counters (SDCs) [19],

constant-weight counters (CWCs) [20], condensed LFSRs

[21], cyclic LFSRs [22], combined LFSR and XOR gates

(LFSR/XORs) [23-24], combined LFSR and shift register

(simple LFSR/SRs) [25], permuted LFSR/SRs [26], and

convolved LFSR/SRs [15, 27-28]. It has been found the

PETPGs based on the universal test set method require longer

test lengths than the PETPGs based on the output-specific test

set method [4, 27-28]. Convolved LFSR/SR is a generator

based on the output-specific approach. It is considered to be

the suitable PETPG as far as the lengths of test set and

hardware overhead are concerning. In [27-28], the size of shift

register segment is constrained to have a desired minimum

length to reduce the number of feed forward stages. This

constraint weakens the potential of using convolved LFSR/SR

and in a lot of cases, the number of XOR gates needed for

convolved LFSR/SR is high. Sometimes, the required search

time to generate the minimal test set is large, or the search

procedure requires the test set length of greater than the

minimal test set. Dimitrios Kagaris and Spyros Tragoudas

[26] have suggested a permuted LFSR/SR which is a simple

LFSR/SR that drives a permuted set of inputs. A simple

LFSR/SR, which is not capable of generating the optimal test

set length because of fixed assignment of residues, may

become feasible through reassigning the residues. From the

results in [26], additional segmentation cells are required to

find an applicable primitive polynomial.

This paper introduces an efficient approach to design a

generator that generates a pseudo-exhaustive test pattern set.

It is required to design a generator with minimal test length

and minimal hardware overhead. The algorithm to design the

convolved LFSR/SR provides efficient search iteration for

residue assignment to the inputs of the CUT so as to increase

the number of potential solutions and thus reduce the

hardware overhead. In addition, a new generator which

bridges the gap between convolved LFSR/SR and permuted

LFSR/SR is presented. With small number of permutations in

the assigned residues, the chance of obtaining efficient results

may be increased. A simple efficient heuristic approach for

permutation is presented. The new generator is considered the

general form of the PETPG. The experimental results indicate

the efficiency of the presented approach. The results also

show that the insertion of additional segmentation cells

required by the method outlined in [26] is not required.

The basic concept of the PET will be started in the next

section. The new algorithm to design the convolved LFSR/

SR as the PETPG is presented in section 4. Then, the new

PETPG is presented in section 5. The experimental results

will be in section 6 and the conclusions in section 7.

3. BASIC CONCET OF THE PST
The combinational CUT with n inputs and m outputs is

modelled as a direct acyclic graph. The nodes represent gates

and the interconnection signals are represented by edges. Each

output cone of the circuit forms a subgraph need not be

disjoint. The dependency set, Di, of the output cone i is

considered the set of the primary inputs and the pseudo-

primary inputs that feed it directly or affect it through another

node. The dependency, |Di|, of the output cone i is the car-

dinality of its dependency set. Let k be the maximum value

among the dependencies of the m output cones. The circuit

can be characterized as an (n, m, k) circuit. The circuit is

segmented into m output cones, and each cone is exhaustively

tested. The test ensures detection of all detectable

combinational faults with a single-test pattern within

individual cones of the CUT without fault simulation. The

time required for the PET depends on the sizes of the output

cones.

 The first w stages of the (n, w) simple LFSR/SR are

configured as an LFSR with primitive polynomial p(x) of

degree w. The remaining n - w stages are connected as a

shift register (SR). The residues R0, R1, R2… Rw-1 given by 1+

x1 + x2 + … + xw-1 represent the w test signals generated by the

LFSR portion. These residues are fixed for LFSR portion

independent of p(x). The remaining n - w residues (test

signals) assigned to remaining n - w circuit inputs are linear

combination of the residues of the LFSR portion. The residues

Rw through Rn-1 are fixed by specific p(x). For an (n, w) simple

LFSR/SR based on p(x), stage i generates the residue xi mod

p(x) denoted as Ri. The minimal test set for the PET is

generated when w equals k or the search procedure requires

the test set length equals 2k. The primitive polynomial p(x)

exhaustively exercises the dependency set Di = { d1, d2, …,

dk}, if and only if the k residues, xdj mod p(x) and 1≤ j ≤ k

are linearly independent [29].

Condition 1: For each output cone i, all residues Rdj, dj Di,

, 1≤ j ≤ |Di|, must be linearly independent.

Definition 1: The residues assigned to a dependency set of an

output cone that satisfies condition 1 is called applicable

residues.

Definition 2: A primitive polynomial p(x) that satisfies

condition 1 for all dependency sets of the output cones is

called an applicable polynomial.

Example 1: The dependency sets of the (8, 6, 4) CUT are

D0 = {0, 1, 2}, D1 = {0, 2, 3, 6}, D2 = {1, 4, 5, 6}, D3 = {0, 2,

4, 5}, D4 = {3, 4, 5}, D5 = {0, 1, 2, 7}. The (8, 4) simple

LFSR/SR based on p(x) = 1 + x3 + x4 is shown in Figure 6.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

32

Fig. 6: The residue for (8, 4) LFSR/SR.

In Table 1, residues from R0 to R7 are calculated based on xi

mod p(x) of Ri in the polynomial form and the digital form.

Table 1. Residues from R0 to R7 of p(x) = 1 + x3 + x4

Residue
Residue in the

polynomial form

Residue in the

binary form

R0 1 0111

R1 x 1011

R2 x2 1101

R3 x3 1110

R4 1 + x3 1001

R5 1 + x + x3 1101

R6 1 + x + x2 + x3 1111

R7 1 + x + x2 1110

Residues are considered for assignment to CUT inputs in the

order generated by successive stages of a simple LFSR/SR.

To check, for example, if the residues assigned to D1 are

applicable residues or not, the residues, R0, R2, R3, and R6, are

assigned to the circuit inputs, I0, I2, I3, and I6, respectively.

(The dependency set, D1, which equals {0, 2, 3, 6}, is also

referred to as a 4-subset of 8.) Matrix MD1 is arranged, and

transformed to the upper triangle matrix, UD1, whose

determinant equals 1. Then, these residues are applicable

residues.

























1100

1010

1000

1001

6320

1

RRRR

M D





















1000

1100

1010

1001

1DU

These checks are repeated for all dependency sets. The

residues assigned to D2, and D5 are linearly dependent

because Matrix MD2 is arranged, and transformed to the upper

triangle matrix, UD2, whose determinant equals 0, and the

determinant of MD5 is equals 0, also. Therefore, the

polynomial p(x) = 1 + x3 + x4 is not applicable.

























1110

1000

1101

1110

6541

2

RRRR

M D





















0000

1000

1110

1101

1DU

























0000

1100

1010

1001

7210

5

RRRR

M D

Lemma 1 [27-28]: An (n, w) multiple LFSR/SR exists for

generating the PET for an (n, m, k) circuit if and only if there

exists an (n, w) convolved LFSR/SR for the circuit where the

length of each SR segment is at least w.

Example 2: For the (15, 4) simple LFSR/SR based on p(x) =

1 + x3 + x4. For each stage i in the (15, 4) simple LFSR/SR,

the residues will be calculated based on xi mod p(x). An initial

seed for the LFSR stages is 1000 is seen to be shifted from the

left during the initialization phase. For the (15, 4) simple

LFSR/SR, the initial seed is generated for all stages of the

simple LFSR/SR and all patterns generated from all stages of

the (15, 4) simple LFSR/SR in the initialization phase and the

testing phase are shown in Table 2. In Table 2, stage 0 is

considered the left-most bit of the pattern and stage 14 is

considered the right-most bit of the pattern. In the last row of

the second column of Table 2, the initial seed of all stages of

(15, 4) simple LFSR/SR is shown by bold font which is the

initial pattern in the testing phase. From example 1, the (8, 4)

simple LFSR/SR based on p(x) cannot exhaustively test all

output cones of the CUT. Using multiple LFSR/SR, the

applicable residues of all output cones in example 1 are 0-3

11-14 which exhaustively test all output cones of the CUT.

Figure 7 shows a multiple LFSR/SR, composed of two (4, 4)

simple LFSR/SRs. Both simple LFSR/SRs are based on the

same p(x). The initial seed of the first (4, 4) simple LFSR/SR

is 1000 (the first row of the third column in Table 2). The

initial seed of the second (4, 4) simple LFSR/SR is 1100 (the

first row of the third column in Table 2). The contents of the

second (4, 4) simple LFSR/SR will become 1000 after eleven

clock cycles. Hence the first (4, 4) simple LFSR/SR generates

R0 through R3 and the second (4, 4) simple LFSR/SR

generates R11 through R14. This multiple LFSR/SR generates

patterns to exhaustively test all output cones. Thus, the initial

seeds can be manipulated to generate the desired residues

from the simple LFSR/SRs. The length of each SR segment

must be at least w (according to lemma 1) to work as

independent simple LFSR/SRs, run in parallel.

(a) Simple LFSR/SR.

(b) Multiple LFSR/SR.

Fig. 7: Multiple LFSR/SR as the special case of the

convolved LFSR/SR.

Table 2. Initial seed determination of the Simple

LFSR/SR.

Pattern number Initialization phase Testing phase

1 100000000000000 100011110101100

0 010000000000000 010001111010110

2 001000000000000 001000111101011

3 100100000000000 100100011110101

4 110010000000000 110010001111010

5 011001000000000 011001000111101

6 101100100000000 101100100011110

7 010110010000000 010110010001111

8 101011001000000 101011001000111

9 110101100100000 110101100100011

01 111010110010000 111010110010001

00 111101011001000 111101011001000

02 011110101100100 011110101100100

03 001111010110010 001111010110010

04 000111101011001 000111101011001

The initial seed 100011110101100 100011110101100

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

33

4. NEW ALGORITHM TO DESIGN THE

CONVOLVED LFSR/SR

4.1 Idea of the Residue Assignment
For an (n, w) convolved LFSR/SR, all possible residues can

be considered for input assignment. However, the number of

possible residues increases exponentially with the degree of

the primitive polynomial, p(x). In practice, only a few residues

are considered for input assignment, Q. It is difficult to get the

benefit of the convolved LFSR/SR without a good search

algorithm to obtain the minimal hardware overhead solution

in reasonable time. The source of hardware overhead of the

convolved LFSR/SR is the number of XOR gates used to

realize the individual feed forward (FF) stages. To minimize

the area overhead, it is required to reduce the number of FF

stages. The structure of the convolved LFSR/SR has been

restricted to be one of the four forms in Figure 8. These forms

restrict the number of FF stages into two stages at most.

Fig. 8: Different forms of the convolved LFSR/SR.

Form A consists of two parts, the first part is the LFSR

portion with size w, and the second part is the SR segment a

with size n - w. If applicable residues are assigned to all CUT

inputs in this form and n - w ≥ w, the generator will be a

multiple LFSR/SR and if applicable residues are assigned to

all CUT inputs in this form and n - w < w, the number of FF

stages will be one. Form B consists of two parts, the first part

is a (w + tb, w) simple LFSR/SR, and the second part is the SR

segment c with size n - (w + tb), where tb is the size of the SR

segment b. If applicable residues are assigned to all CUT

inputs in this form and n - (w + tb) ≥ w, the generator will be a

multiple LFSR/SR and if applicable residues are assigned to

all CUT inputs in this form and n - (w + tb) < w, the number of

FF stages will be one.

Form C consists of three parts, the first part is the LFSR

portion with size w, the second part is the SR segment d with

size td, and the third part is the SR segment e with size n - (w

+ td). If applicable residues are assigned to all CUT inputs in

this form, the number of FF stages will be at most two. If the

size of two or one of the SR segments d and e is greater than

or equal to w, the generator will be a multiple LFSR/SR or at

most it is required to feed a residue at the input of the FF

stage. Form D consists of three parts, the first part is (w + tg,

w) simple LFSR/SR, the second part is the SR segment h with

size th, and the third part is the SR segment i with size n - (w +

tg+ th). If applicable residues are assigned to all CUT inputs in

this form, the number of FF stages will be at most two. If the

size of at least one of the SR segments h and i is greater than

or equal to w, the generator will be a multiple LFSR/SR or at

most it is required to feed a residue at the input of the FF

stage.

This section presents the new algorithm to design the

convolved LFSR/SR, referred to as NEW_CONV. There are

two phases in the NEW_CONV. The first phase is to search for

an applicable primitive polynomial using the candidate

primitive polynomials. In the case of the existence of this

polynomial, the convolved LFSR/SR will be a simple

LFSR/SR. If no primitive polynomial is applicable, the second

phase commences. This phase searches for a residue

assignment to generate the convolved LFSR/SR in one of the

four forms based on a primitive polynomial with minimum

terms. All residues from 0 through (w - 1) are automatically

assigned to the inputs 0 through (w - 1) and n - w residues of

Q – w residues are assigned such that all output cones may be

exhaustively tested. The procedure for selecting n - w residues

of Q - w residues is required to achieve minimal hardware.

The search procedure in this phase selects (n - w) residues of

(Q - w) residues in a manner which restricts the number of FF

stages to a maximum of two without restriction in the size of

the SR segment to get the convolved LFSR/SR in any of the

forms shown in Fig. 8. The search problem is converted to

generate possible choices that satisfy these constraints.

An example is given for simplicity. It is taken for the (12, m,

4) CUT, and (12, 4) convolved LFSR/SR with Q = 15. There

are three possible choices for the (12, 4) convolved LFSR/SR

of form A. In Table 3, to Table 6, the residue assignment for

CUT inputs utilizes those residues assigned to 1 and neglects

residues assigned to 0. Basically in residue assignment, R0

through R3 are assigned to inputs 0 through 3. In the first

possible choice, R5 through R12 are assigned to inputs 4

through 11 and check for applicable residues for all output

cones. If any output cone does not satisfy condition 1, then go

to the next possible choice in form A. If all output cones

satisfy condition 1, then a suitable convolved LFSR/SR of

form A is found. In general, the number of possible choices in

the case of form A is referred to NA according to equation (1).

NA = Q - n. (1)

Table 3. Form A with n =12, w =k = 4, and Q = 15.

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1

There are forty-two possible choices for the (12, 4) convolved

LFSR/SR of form B and form C for residue assignment.

Table 4 and Table 5 illustrate the possible choices of form B

and form C for (12, 4) convolved LFSR/SR, respectively. For

the possible choices of form B and form C, if all output cones

satisfy condition 1 after residue assignment, then a suitable

convolved LFSR/SR of form B and form C is found. In

general, the number of possible choices in the case of form B

and form C is referred to NBC according to equation (2).







1

0

)1)((
nQ

i

BC wninQN (2)

There are sixty-three possible choices for the (12, 4)

convolved LFSR/SR of form D for residue assignment.

Table 6 illustrates the possible choices of form D for (12, 4)

convolved LFSR/SR. For the possible choices of form D, if all

output cones satisfy condition 1 after residue assignment, then

LFSR portion

LFSR portion

LFSR portion

LFSR portion

(a) Form A

(b) Form B

(c) Form C

(d) Form D

a

b c

d e

g h i

SR segment

SR segment

SR segment SR segment

SR segment SR segment

Feed forward stage

Feed forward stage

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

34

a suitable convolved LFSR/SR of form D is found. In general,

the number of possible choices in the case of form D is

referred to ND according to equation (3).

 









3

0

1

1

)2)((
wn

j

nQ

i

D jwninQN (3)

The search is divided into two basic searches. The first search

is the partial search based on form A, B, and C. The number

of the possible choices in the partial search will be the sum of

NA and NBC. The second search is the full search by using all

possible choices. The number of those patterns in the full

search will be the sum of NA, NBC, and ND. In the previous

equations, w is the degree of the primitive polynomial p(x), Q

is the limit of the number of the available residues for residue

assignment, and n is the number of CUT inputs. When Q

increases, the number of possible choices is increased. This

may increase the chance to get several solutions with minimal

hardware overhead in the form of multiple LFSR/SRs.

Table 4. Form B with n =12, w =k = 4, and Q = 15.

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 0 1 0 0 0 1 1

1 1 1 0 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 0 1

1 1 1 0 1 1 1 1 1 1 0

Table 5. Form C with n =12, w =k = 4, and Q = 15.

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 0 1 1 0 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1

1 1 0 1 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 0 1 0

1 1 1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 0 1 1 0 1 0 1

1 1 1 1 0 1 1 1 0 1 0

1 1 1 0 1 0 1 1 0 1 1

1 1 1 0 1 0 1 1 1 0 1

1 1 1 0 1 0 0 1 1 0 1

1 1 1 0 1 0 1 1 1 1 0

1 1 1 0 1 0 1 0 1 0 1

1 1 1 0 1 0 1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0

Table 6. Form D with n =12, w =k = 4, and Q = 15.

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 1 0 1 0 0 0 0 0 0 1

1 1 1 1 1 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 1

1 1 1 0 1 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 1

1 1 1 0 0 1 1 0 0 0 0

1 1 1 0 0 0 1 0 0 0 1

1 1 1 0 0 0 1 1 0 0 0

1 1 1 0 0 0 0 1 0 0 1

1 1 1 0 0 0 0 1 1 0 0

1 1 1 0 0 0 0 0 1 0 1

1 1 0 0 0 0 0 0 1 1 0

1 1 1 0 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 0

1 1 1 0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 1 0

1 0 1 0 1 0 0 0 0 0 1

1 0 1 0 1 1 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 1

1 0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0 1

1 0 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 0

1 0 1 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 1 1 0

1 0 1 1 0 1 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0

1 0 1 1 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0 0

1 0 0 1 0 0 1 0 0 0 1

1 0 0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 1 1 0 0

1 0 0 1 0 0 0 0 1 0 1

1 0 0 1 0 0 0 0 1 1 0

1 0 0 1 1 0 1 0 0 0 0

1 0 0 1 1 0 0 1 0 0 0

1 0 0 1 1 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 1 0

1 0 0 0 1 0 1 0 0 0 1

1 0 0 0 1 0 1 1 0 0 0

1 0 0 0 1 0 0 1 0 0 1

1 0 0 0 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0 1 0 1

1 0 0 0 1 0 0 0 1 1 0

1 0 0 0 1 1 0 1 0 0 0

1 0 0 0 1 1 0 0 1 0 0

1 0 0 0 1 1 0 0 0 1 0

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

35

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 0 0 0 0 1 0 1 0 0 1

1 0 0 0 0 1 0 1 1 0 0

1 0 0 0 0 1 0 0 1 0 1

1 0 0 0 0 1 0 0 1 1 0

1 0 0 0 0 1 1 0 1 0 0

1 0 0 0 0 1 1 0 0 1 0

1 0 0 0 0 0 1 0 1 0 1

1 0 0 0 0 0 1 0 1 1 0

1 0 0 0 0 0 1 1 0 1 0

The possible choices of forms B, C, and D consist of two

parts. The first part is fixed in every portion in the form

(shadow cells in Table 4, Table 5, and Table 6 besides the

LFSR portion). The second part is variable. For every portion,

the linear independence of the residue assignment of the fixed

part is checked. If that check is linearly dependent, there is no

need to continue the search for that portion and the procedure

will move to the next portion in the form. If this check is

linearly independent, the algorithm will continue with the

residue assignment in that portion.

Sometimes, if Rw, assigned to input w, is not an applicable

residue with respect to residues R0 to Rw-1, the residue

assignment using all possible choices of form B and form D

does not satisfy condition 1. It is required to determine which

applicable residue from w + 1 to ((Q- 1) - (n - w - 1)) assigned

to input w. The search from the portion corresponding to the

assignment input w to an applicable residue is started. So, it is

not useful to begin the search from the first possible choice,

and it is required to determine the first applicable residue to

assign input w before the search begins. For high values of Q,

the determination of the first applicable residue assigned to

input w and the check of the fixed part of the first possible

choice of every portion will save considerable search time.

The applicable residues will take any form of the convolved

LFSR/SR in Figure 8 when this assignment satisfies

condition 1. If the assigned residues do not achieve

condition 1 for any output cone, the search procedure

progressively assigns residues to all inputs for another

possible choice.

From the explanation of the presented search, the residue

assignment is restricted by the number of FF stages to be at

most two with no restriction in the size of the SR segment.

Residue assignment here is parallel, i.e., the search procedure

assigns residues to all inputs of the CUT at the same time and

checks if condition 1 is satisfied or not to obtain the

convolved LFSR/SR in any of the forms shown in Figure 8.

The restriction in the number of FF stages and lack of

restriction in the size of the SR segment increases the chance

of obtaining several solutions and from these solutions; the

solution with the least hardware overhead may be selected.

Example 3: A portion from the possible choices of form B

will be taken to demonstrate how the search sequence

occurs.

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1

Using the first possible choice, residues 0-3, 4-7, 9-12 are

assigned to the CUT inputs and check condition 1 of all

output cones. If any output cone is linearly dependent, go to

the next possible choice. For each possible choice in the

portion, the residues 0-3, 4-7 are fixed. The linear

independence of residues 0-3, 4-7 assigned to the inputs

0 through 7 is first checked for all dependency sets of the

output cones. If this check is linearly dependent, there is no

need to continue the search in that portion and the procedure

will exit from that portion to the first possible choice in the

next portion. If this check is linearly independent, the

algorithm will continue with the residue assignment in this

portion.

Example 4: The dependency sets of the output cones of the

(12, 6, 4) CUT (Dj, 1 ≤ j ≤ 6) are {1, 3, 5, 11}, {2, 6, 7, 12},

{2, 3, 8, 10}, {9, 11, 12}, {3, 7, 9, 11}, {2, 10, 11},

respectively.

Three solutions are achieved based the algorithm

NEW_CONV for this CUT using primitive polynomial p(x) =

1 + x3 + x4. The second column in Table 7 shows the

applicable residues. In the first and second solution, it is

required to feed R4 to the input of the FF stage. The rest of the

SR segments are independent simple LFSR/SRs. The number

of XOR gates required to realize the convolved LFSR/SR to

exhaustively test all output cones is 3 in all solutions shown in

Figure 9. Using the algorithm in [27-28], the following unique

solution 0-6, 8-9, 12-14 is achieved. It is required to feed R7

and R11 to the inputs of the first and second feed forward

stage, respectively. The number of XOR gates required to

realize the convolved LFSR/SR to exhaustively test all output

cones is 4 shown in Figure 9d.

Table 7. Different solutions for example 4

Possible

Solution

Applicable

residues

Feeding

residue

XOR

gates

0 0-3, 5-6, 9-14 R4 3

2 0-3, 5-7, 10-14 R4 3

3 0-3, 5-8, 11-14 - 3

(a) First solution of algorithm NEW_CONV.

(b) Second solution of algorithm NEW_CONV.

(b) Third solution of algorithm NEW_CONV.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

36

(d) Solution of algorithm in [27-28].

Fig. 9: Several convolved LFSR/SRs.

4.1 Algorithm NEW_CONV
Input: The dependency sets of output cones, w (≥ k), Q,

partial or full search, and the number of required solutions (S).

Output: Applicable residues for CUT inputs and the required

initial seed.

1. Phase 1

1.1 Retrieve all primitive polynomials or the subset of all

primitive polynomials of degree w from a stored file and

put them in queue L.

1.2 Select the primitive polynomial, p(x) from L.

1.3 Residues from R0 through Rn-1 are generated, based on

p(x), using subroutine RESIDUE [4].

1.4 Condition 1 is checked for all dependency sets of the

output cones.

1.5 If condition 1 is satisfied for all dependency sets, then the

corresponding p(x) is the applicable polynomial, store it

as a solution and calculate the initial seed, discussed in

example 2.

1.6 If the number of solutions exceed S, exit.

1.7 If there are other primitive polynomials in L, go to step

1.3.

1.8 If all candidate primitive polynomials are finished and no

applicable polynomial exists, go to phase 2.

2. Phase 2

2.1 Select a primitive polynomial with minimum terms from

L, and generate all residues (R0 through RQ-1) using

subroutine RESIDUE in [4].

2.2 Determine the first applicable residue assigned to input

w.

2.3 If Rw is not the applicable residue to input w, then all

possible choices of form B and form D will be ignored.

2.4 If Rw is the applicable residue to input w and the full

search is not selected, all possible choices of form D

will be ignored.

2.5 Through the generation of possible choices for residue

assignment, do the following steps.

2.5.1 Condition 1 of the assigned residues to the fixed

part of the first possible choice of specific portion

in any convolved LFSR/SR forms is checked for

all dependency sets of the output cones.

2.5.2 If this check is not satisfied, this portion is

completely ignored and the next one is

considered. Then, go to step 2.5.1.

2.5.3 For each possible choice in the portion and the

corresponding residue assignment, condition 1 is

checked for all dependency sets of the output

cones. If this condition is not satisfied, try the

next one in the same portion. In the case of

satisfying condition 1, the corresponding assigned

residues are applicable residues to exhaustively

test all output cones and then the initial seed is

calculated. This result is stored as a solution. If

the number of the solutions exceed S, exit.

2.5.4 If a new portion begins, go to step 2.5.1.

2.5.5 If the complete set of the generated possible

choices is finished and L is not empty, go to step

2.1.

2.5.6 If the complete set of the generated possible

choices is finished and L is empty, exit.

Example 5: The dependency sets of output cones of the

(24, 6, 10) CUT from 1 to 6 (Dj, 1 ≤ j ≤ 6) are

D0 = {0, 1, 3, 4, 8, 9, 10, 13, 16, 22}

D1 = {0, 2, 3, 5, 6, 8, 11, 14, 17, 23}

D2 = {1, 2, 4, 5, 7, 9, 12, 15, 18, 22}

D3 = {0, 1, 2, 6, 7, 10, 11, 12, 19, 23}

D4 = {3, 4, 5, 6, 7, 13, 14, 15, 20, 22}

D5 = {8, 9, 10, 11, 12, 13, 14, 15, 21, 23}

By using algorithm NEW_CONV, the first solution is as

follows. There are two SR segments, the first one is of

size 3, and the other one is of size 11 which is an

independent (11, 10) simple LFSR/SR with the same

primitive polynomial and different initial seed

(01111111001). R12 feeds the input of the feed forward stage

of the first SR segment to generate R13, R12 = x2 + x5 = R2 +

R5. This residue needs one XOR gate. The convolved

LFSR/SR for this circuit with its initial seed using

NEW_CONV is shown in Figure 10a. From Figure 10a, the

convolved LFSR/SR has three XOR gates and the test set

length required is 210-1 (1023) which is the optimal test set

length. This generator misses the all-zero seed so, this

generator needs two initial seeds.

The residue assignment according to algorithm in [27-28] will

be 0-9, 50-60, 111-113. The upper bound of the number of

required XOR gates is 8. The number of terms of R110 is 7

(R110 = 1 + x2 + x3 + x4 + x5 + x7 + x9 = R0 + R2 + R3 + R4 + R5

+ R7 + R9). The convolved LFSR/SR for this CUT with its

initial seed is shown in Figure 10b.

It is clear from example that the algorithm NEW_CONV,

presented in this paper to design convolved LFSR/SR, is the

best in terms of test set lengths and the hardware overhead

compared to other generators [4]. The algorithm produces

several solutions which provide the same minimal hardware

overhead and the same optimal test set length, some of which

are shown in Table 7.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

37

(a) Convolved LFSR/SR using NEW_CONV.

 (b) Convolved LFSR/SR using TPG.

Fig. 10: Several convolved LFSR/SRs.

Table 7. Different solutions of example 5.

Possible Solution Applicable residues XOR gates

0 0-9 13-15 580-590 3

2 0-9 15-17 388-398 3

3 0-9 15-17 658-668 3

4 0-9 15-17 826-836 3

5 0-9 15-17 846-856 3

6 0-9 16-18 680-690 3

7 0-9 16-18 853-863 3

8 0-9 16-18 997-1007 3

9 0-9 16-19 127-136 3

01 0-9 16-19 380-389 3

5. DESIGN OF THE NEW GENERATOR

IN THE PET
Let π0 be an index default permutation of the n inputs of the

CUT which signifies the order in which the corresponding

flip-flops (stages) of the convolved LFSR/SR are linked.

Consider an (n, m, k) CUT along with the notation that input Ii

is assigned a unique index (label) i where 0 ≤ i ≤ n. The

default permutation π0 of the inputs of the CUT is specified

completely by n-tuple (0, 1, 2, 3 ... n - 1), let the set A = {I0,

I1, I2, …, In-1}, and π0 = {0, 1, 2, 3 ... n - 1}.

Figure 11 is considered the general scheme of the PETPG. In

a convolved LFSR/SR and using the default permutation π0,

inputs 0 through i are assigned to the residues R0 through Ri,

and inputs i + 1 through n - 1 are assigned to the residues Ri+j

through Ri+n-2. In the new generator, it is possible to change

the default permutation to another permutation π. In Figure 11

using permutation π, every CUT inputs are assigned to the

residues according to permutation π0 except Iw+2 assigned

Rw+1, Iw+1 assigned Rw+2, Ii+2 assigned Ri+j, and Ii+1 assigned

Ri+j+1. So, the convolved LFSR/SR is considered a special

case of the new generator. The simple LFSR/SR and the

permuted LFSR/SR are considered special cases of the new

generator as well.

Using a specific primitive polynomial p(x), let β be the set

containing all dependency sets of the output cones whose

assigned residues are linearly dependent and |β| be the number

of the dependency sets in β. In the case of the convolved

LFSR/SRs, all dependency sets of the output cones must

satisfy condition 1 so that β is an empty set. This restriction

can be reduced to get a solution even if β is not an empty set.

This is done by a small number of permutations of the

assigned residues to the CUT inputs to make β an empty set.

The permutation of the residues means the permutation of the

CUT inputs assigned to those residues. The permutation of the

CUT inputs may be useful in obtaining a PETPG with

minimal test set length. The permutation of the inputs results

in a routing overhead so the generator synthesis is done prior

to the layout phase of the CUT, and that, therefore any

rewiring issues are tackled in the overall layout of the CUT

and the BIST circuitry as a whole.

5.1 The Search to Obtain Minimum |Β|
The search to get the minimum |β|, referred to as |β|min, is

carried out either by searching in the candidate primitive

polynomials or by using the proposed residue assignment,

discussed in section 4 for a specific primitive polynomial.

Choosing a small value of |β|min will reduce the required

number of permutations that reduces the routing overhead.

First, two useful definitions need to be introduced.

Definition 3: An applicable primitive polynomial for

permutation is the polynomial for which at least (m - |β|min)

dependency sets of the output cones satisfy condition 1 before

permutation.

Definition 4: The applicable residues for permutation are

produced by the residue assignment for the CUT inputs before

permutation such that at least (m - |β|min) dependency sets of

the output cones satisfy condition 1.

The algorithm to design the new generator consists of two

phases. The first phase is dedicated to search from the

candidate primitive polynomials to find the applicable

primitive polynomial for permutation and, with a small

number of permutations; the set β may be an empty set. The

generator resulting from this phase is the permuted LFSR/SR

(the simple LFSR/SR with permutation π). In the second

phase, the applicable residues for permutation can be found

using the proposed residue assignment, discussed in section 4

and, with a small number of permutations; the set β may be an

empty set. The generator resulting from this phase is the new

generator (convolved LFSR/SR with permutation). A

combination of changing the assigned residues with a small

number of permutations may increase the chance of obtaining

a solution for the case where the convolved LFSR/SR cannot

get a solution with the minimal test set length and the minimal

hardware overhead (i.e, reduce the required number of XOR

gates).

For simplicity, the algorithm divides the length of the

generator into two parts. The first part is the LFSR portion

with size w and the second part is either a simple LFSR/SR

with size n - w (n-w ≥ w) or shift register with size n - w (n-w

< w). The residues of the second part of the generator can be

changed according to the residue assignment. Refer to the

convolved LFSR/SR in form A shown Figure 8. This division

is practically adequate and the experimental results in

section 6 will illustrate that situation.

5.2 Idea of the Permutation
In this section, the idea of the permutation of one dependency

set, whose assigned residues are linearly dependent, is

explained. The permutation approach of all dependency sets,

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

38

whose assigned residues are linearly dependent, will be

explained in section 5.3.

It is known from condition 1, that all residues assigned to the

dependency set must be linearly independent. If the residues

assigned to the dependency set are linearly dependent, one or

more residues are linear combinations of the each other. The

idea of the permutation will be demonstrated by an example.

Fig. 11: New generator for the PET.

Example 6: The (24, 6, 10) CUT with its dependency sets

according to example 5 is considered.

This example consists of two phases. The first phase indicates

the solution using the applicable primitive polynomial for

permutation. The second phase indicates the solution using

the applicable residues for permutation for a specific primitive

polynomial.

1. The first phase: The primitive polynomial p(x) with

minimum terms, and |β|min is determined. This polynomial

p(x) = 1 + x2 + x7 + x8 + x10, and |β|min equals 1 so the p(x) is

an applicable primitive polynomial for permutation. The

dependency set whose assigned residues are linearly

dependent, b, is {0 1 2 6 7 10 11 12 19 23}, let π0 = {0, 1,

2,...., 23}. First, construct set b’ = {0, 1, 2} (b’  b) and

check if its assigned residues are linearly independent or not.

If the residues are linearly independent, add to b’ the next

element which is 6 in b (b’= b’ {6}). The set b’ is now {0,

1, 2, 6} (b’  b). If its assigned residues are linearly

independent, add to b’ the next element. This process is

continued until the assigned residue for last added element to

b’ causes linear dependence with other assigned residues of

elements in b’. The residue assigned to last added element is

the first residue that causes the linear dependence of b. In this

example, this residue is the residue assigned to I23 in b (input

23) which is R23. Now, it is required to permute this residue

with another residue, assigned to input p such that p  π0 and

p b. The first choice is the residue assigned to I22. The resi-

dues assigned to set b will be linearly independent but this

permutation will generate linear dependence for three other

dependency sets of the output cones. This permutation is

ignored. The residue assigned to I21 is then considered but

again the residues assigned to set b are linearly dependent.

The residue assigned to I20 is then considered, followed by I18

and so on until the residue assigned to I13 is permuted by the

residue assigned to I23 and all residues assigned to all

dependency sets of the output cones are linearly independent.

The new input assignment of the permuted LFSR/ SR, π, is

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 15, 16, 17, 18,

19, 20, 21, 22, 13}. In this case, three XOR gates are required,

and the required number of permutations is 1. The permuted

LFSR/SR for that CUT with its initial seed and new

permutation of the CUT inputs, π, is shown in Figure 12.

Fig. 12 Permuted LFSR/SR of phase 1.

2. The second phase: Set |β|min to 1 and limit the number of

terms of the primitive polynomial to 3 so as to use one XOR

gate in the LFSR stages. The number of primitive polynomials

of degree 10 with one XOR gates is 2 [4]. Unfortunately, |β| of

these primitive polynomials are greater than one (greater than

|β|min). So, it is required to divide the generator into two parts,

the first part with length 10 which is LFSR portion and the

second part with length 14 which is a (14, 10) simple

LFSR/SR (convolved LFSR/SR with form A). The residues of

the second part are changed to find |β|min which equals 1. The

solution in this case is the primitive polynomial p(x) =

1+x7+x10, and the residues of the generator are: 0-9, 40-53.

The residue assignment, 0-9, 40-53, is the applicable residues

for permutation. By permuting R49 with R53, all dependency

sets of the output cones satisfy condition 1 (this permutation is

carried out as in the first part). R49, assigned to I19, is now

assigned to I23 and R53, assigned to I23, is now assigned to I19.

The number of required XOR gates for this generator is 2 and

the required number of permutations is 1. The generator with

its initial seed and permutation of the CUT inputs, π, is shown

in Figure 13. The convolved LFSR/SR designed using

algorithm NEW_CONV requires three XOR gates to test all

output cones exhaustively in example 5. The new generator

needs just two XOR gates.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

39

 Fig. 13 Novel generator of phase 2.

5.3 Permutation Approach and the

Algorithm NEW_GEN
Each phase in the new generator design consists of other two

phases. The first one searches for either the applicable

primitive polynomial for permutation or the applicable

residues for permutation. The second one is the permutation

phase. In this section, the permutation approach for all

dependency sets whose assigned residues are linearly

dependent is presented.

All dependency sets whose assigned residues are linearly

dependent are collected in β. (The number of the dependency

sets in β is |β|min.) The first dependency set in β is chosen,

referred to as set b, and the first assigned residue causing

linear dependence in b is determined. Let input s be the input

whose assigned residue is the first residue in b causing linear

dependence. Let set b’ (b’  b) be the set that covers the

elements of b from the first element to element s. Now, it is

required to permute the residue assigned to input s with the

residue assigned to another input, p, such that p  π0 and p

b. The residues assigned to set b’, after permuting the

residue assigned to input p, are checked for linear

independence. In the case that the residues assigned to set b’

are linearly independent and the residues assigned to set b

after the previous permutation are linearly dependent, store p

in buffer pp as the first permuted element in set b. The search

to find other permuted elements in b to make the residues

assigned to b linearly independent is repeated.

For example, if b = {0, 2, 3, 6, 7}, and π0 = {0, 1, 2,...., 9}. Let

the residues assigned to set b be linearly dependent, and the

first residue in b causing linear dependence be the residue

assigned to I6. It is required to permute the residue assigned to

I6 (which is input s) with another residue assigned to input p

such that p  π0 and p b. If the residue assigned to I6 is

permuted with the residue assigned to I8 (which is input p)

and the residues assigned to set b’, which are {0, 2, 3, 8}, are

linearly independent and the residues assigned to set b, which

is {0, 2, 3, 8, 7}, are still linearly dependent after permutation,

then store p, which is I8, in buffer pp as the first permuted

element in set b. The first residue, causing linear dependence

in b after the first permutation, is the residue assigned to I7

and it is required to permute it with another residue assigned

to input p such that p  π0 and p b until the residues

assigned to set b are linearly independent. (Generally, input p

is considered in the discussion as the permuted element.)

In the case that the residues assigned to b are linearly

independent, there are three options:

(1) The number of the dependency sets is less than |β|min. A

new β is constructed.

(2) If |β| ≥ |β|min and there are possibilities for other inputs to

be permuted, then ignore the last permutation in b and try

the next possible input.

(3) If |β| ≥ |β|min and there is no possibility for other inputs to

be permuted, then ignore all previous permutations

applied to b and retrieve the stored input from buffer pp

(first permuted element in set b) and select the possible

input next to the stored input, let this input be p, such that

p π0 and p b.

I will state the steps of algorithm NEW_GEN to design the

new generator for the PET.

Algorithm NEW_GEN

Input: The dependency sets of output cones, w (≥ k), |β|min, Q

(number of generated residues), and S (number of

required solutions).

Output: Applicable residues for the CUT inputs, the initial

seed, π, and the required number of permutations

(N_PER).

1. Phase 1

1.1 Retrieve all primitive polynomials or the subset of all

primitive polynomials of degree w from a stored file and

put them in queue L, set buffer pp to -1.

1.2 If L is not empty, then select the primitive polynomial,

p(x), from L. If L is empty, then go to phase 2.

1.3 Residues from R0 through Rn-1 are generated, based on

p(x).

1.4 Condition 1 is checked for all dependency sets of the

output cones.

1.5 If condition 1 is satisfied for at least (m - |β|min)

dependency sets of the output cones, then the

corresponding p(x) is an applicable primitive polynomial

for permutation and set β is constructed. If p(x) is not an

applicable p(x) for permutation, go to step 1.2.

1.6 Take the first set in β, referred to as b, and set buffer pp

to -1.

1.7 Determine the first residue (assigned to input s) in b

causing linear dependence. Let set b’ be a subset of b

containing all elements in b from the first element up to

input s. The residue assigned to input s is permuted with

the residue assigned to input p such that p  π0 and p

b.

1.8 If the residues assigned to b’ are linearly dependent, there

are two options:

1.8.1 If buffer pp equals -1, try next possible input to be

permuted. If there is no possibility for other inputs

to be permuted, then go to step 1.2.

1.8.2 If buffer pp does not equal -1, try next possible

input to be permuted. If there is no possibility for

other inputs to be permuted, then ignore all

previous permutations applied to b and retrieve the

stored input from buffer pp (first permuted

element in set b) and select the possible input next

to the stored input, let this input be p, such that p

 π0 and p b, construct b’, set the buffer pp to -

1 and go to step 1.8. If there is no possible input

next to the stored input as a permuted element,

then go to step 1.2.

1.9 If the residues assigned to b’ are linearly independent and

the residues assigned to b are linearly dependent after

the permutation, then store p in the buffer pp when p is

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

40

the first permuted element (input) in b then go to step

1.7.

1.10 If the residues assigned to b are linearly independent

and the number of linearly dependent sets of the

dependency sets is less than |β|min and do not equal zero,

then construct the new β, update |β|min with the new β,

and go to step 1.6.

1.11 If the residues assigned to b are linearly independent,

and the number of linearly dependent sets of the

dependency sets is greater than or equal to |β|min and

there are possibilities for other inputs to be permuted,

then ignore the last permutation in b, try next possible

input, construct b’, and go to step 1.8.

1.12 If the residues assigned to b are linearly independent,

and the number of linearly dependent sets of the

dependency sets of the output cones is greater than or

equal to |β|min and there is no possibility for other inputs

to be permuted, then ignore all previous permutations

applied to b and retrieve the stored input from buffer pp

(first permuted element in set b) and select the possible

input next to the stored input, let this input be p, such

that p  π0 and p b, construct b’, set buffer pp to -1

and go to step 1.8. If there is no possible input next to

the stored input as a permuted element (or buffer pp

equals -1), then go to step 1.2.

1.13. If β is an empty set, print the applicable residues for the

inputs, π, and store it as a solution and determine the

initial seed of the generator.

1.14 If the number of solutions is less than S and there are

other primitive polynomials in L, select the next

primitive polynomial in L and go to step 1.3. If the

number of solutions is equal to S, exit.

1.15 If L is empty and no applicable primitive polynomial for

permutation exists, go to phase 2.

2. Phase 2

2.1 Select a primitive polynomial with minimal terms from

L, and generate all required residues (R0 through RQ-1).

2.2 Using the residue assignment discussed in section 4, find

the applicable residues for permutation.

2.3 Construct set β. .

2.4 Repeat steps 1.6 through 1.13. (In step 1.8 and step 1.12

of phase 1, there is possibility to branch to step 1.2 but

this step in phase 2 will branch to 2.1 when L is not

empty)

2.5 If the number of solutions equals S, exit.

2.6 If the complete set of the generated possible choices

discussed in section 4 is finished and L is not empty, go

to step 2.1.

2.7 If the complete set of the generated possible choices

discussed in section 4 is finished and L is empty, exit.

6. EXPERIMENTAL RESULTS
Using algorithm NEW_CONV, algorithm NEW_GEN, new

PETPG are designed for all combinational benchmark circuits

(labelled as ckt in the first column of Table 8 and Table 9) in

[1], after they had been segmented using the new algorithm

presented in [30]. Table 8 presents the comparison between

the design of the convolved LFSR/SR based on the algorithm

NEW_CONV in this paper and the algorithm in [27-28] for the

segmented benchmark circuits with a cone size reduction, l, of

16, 20, 24, and 28 inputs. In addition, Table 9 presents the

design of the new generators for the segmented benchmark

circuits with a cone size reduction, l, of 16, 20, 24, and 28

inputs. (After segmenting the circuit with the segmentation

cells, the resulting k for the segmented circuits may be less

than l. The difference between l and k, obtained after seg-

menting, is due to the nature of the circuit [16, 30].) The first

two columns of Table 8 and Table 9 provide the

characteristics of the segmented circuits. The exponent terms

for the primitive polynomial, p(x), is given in the third column

of Table 8 and Table 9. The applicable residues for the stages

of the PETPG, the total number of required XOR gates to

realize the PETPG, and the run-time in seconds on a SUN

Sparc II workstation are shown in the fourth and fifth column

of Table 8 and Table 9, respectively. The required number of

permutations (N_PER) is given in the sixth column Table 9.

For example in Table 9, for the segmented c432 circuit in the

first row, the primitive polynomial, p(x), is 1 + x3 + x4 + x5 +

x16. Stages 0 through 62 have residues R0 through R62, respec-

tively. The total number of XOR gates required to realize the

new PETPG is 3 in less than one second with number of

permutations four. Referring to Table 8, the corresponding

design of the convolved LFSR/SR requires 6 XOR gates in 2

seconds for the algorithm NEW_CONV and 14 XOR gates in

less than one second for the algorithm in [27-28].

The number of permutations in the last column of Table 9,

referred to N_PER, is calculated as follows. Let π0 be {0, 1, 2,

3, 4, 5, 6, 7, 8, 9}, and π be {1, 0, 2, 3, 4, 9, 6, 7, 8, 5}. Then,

α is {1, 1, 0, 0, 0, 1, 0, 0, 0, 1}. The elements in the set α are

either 0 or 1. If element i of π0 equals element i of π, then

element i of α = 0, if the elements are not equal then element i

of α = 1. The number of the permutations in π equals the

number of 1’s in α divided by 2 which equals 2 in this case.

From Table 8 and Table 9, note the following:

1. The test set lengths designed for all combinational

benchmark circuits are optimal (minimal) test set lengths (the

degree of p(x), w, equals k) without requiring the insertion of

segmentation cells. From the results in [26], additional

segmentation cells are required to find an applicable primitive

polynomial.

2. The hardware overhead (XOR gates) for NEW_CONV

is always less than that required by algorithm in [27-28]

for the same primitive polynomial and Q. In every case,

NEW_CONV produces several possible solutions which

increase the chance of obtaining a result with minimal

hardware overhead.

3. The algorithm NEW_CONV obtains a solution in cases

where, for the same p(x) and Q, the algorithm in [27-28]

cannot obtain any solution of the optimal test set length. Two

cases (in c499, and c1355) do not provide any solution after

two days run-time whereas algorithm NEW_CONV does in

reasonable time for the optimal test set length.

4. The same applicable residues with the same hardware

overhead was obtained by the algorithm NEW_CONV and the

algorithm in [27-28] for c1908 and using p(x) = 1 + x7 + x20,

and Q = 500. But the run-time using NEW_CONV was 613

seconds while the algorithm in [27-28] requires 5832 seconds.

The hardware overhead of the algorithm NEW_CONV and the

algorithm in [27-28] for c1908 is the same, but the run-time

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

41

using NEW_CONV is faster than the run-time using the

algorithm in [27-28].

5. Comparing the number of XOR gates and the required

run-time between the convolved LFSR/SR using

NEW_CONV in Table 8 and the new generator in Table 9

indicates the efficiency of the new generator where the

required hardware overhead and the run-time are always the

least. In every case, there are several possible solutions

which increase the chance of obtaining a result with minimal

hardware overhead.

6. The number of required permutations of the CUT inputs is

small compared to the length of the generator, n.

7. The new generator has found solutions in cases where the

convolved LFSR/SRs based on the algorithm in [27-28] could

not find a solution in reasonable time. In c5315 and c7552, the

algorithm in [27-28] does not provide any solution when k =

16 for any primitive polynomial of degree 16 (the algorithm in

[27-28] found a solution when w = 17) but the new generator

succeeds with low hardware overhead. All results in Table 9

prove the efficiency of the new generator where a solution in

all cases is achieved. Table 9 demonstrates the potential of the

new generator approach, generating optimal (minimal) test set

lengths with low hardware overhead for the segmented

combinational benchmark circuits.

7. CONCLUSION
An efficient new algorithm to design convolved LFSR/SRs so

as to generate the applicable residues to exhaustively test all

output cones with low hardware overhead has been introduced

and demonstrated. With no restriction in the size of the SR

segment and with restriction in the number of FF stages, a

significant reduction in the number of XOR gates is achieved.

The success of the approach is indicated in the experimental

results where the generation process of possible choices

enables us to produce several possible solutions from which a

minimal hardware solution is chosen.

In addition, a new PETPG, that bridges the gap between the

convolved LFSR/SR and the permuted LFSR/SR, has been

introduced and demonstrated. An efficient heuristic search

approach has been presented. It permutes the CUT inputs

after the applicable residues for permutation become

available. The changing residues assigned to the CUT inputs

followed by permutation gives the new generator a special

character in that the convolved LFSR/SR and the permuted

LFSR/SR are special cases of the new generator. The

approach is successful because: (1) The test set lengths

designed for all combinational benchmark circuits are

optimal (minimal) test set lengths without requiring

additional segmentation cells. (2) The required hardware

overhead and the run-time are always less than that produced

by the convolved LFSR/SR using NEW_CONV and the

algorithm in [27-28]. (3) The number of required

permutations of the CUT inputs is small compared to the

length of the generator, n. (4) The new generator has found

solutions for those cases where the convolved LFSR/SRs

using the algorithm in [27-28] could not find a solution.

Finally, the practical results indicate that a generator with

minimal test set length, minimal hardware overhead,

minimum routing overhead, and good performance can

be obtained.

Table 8. Results of the new convolved LFSR/SR for segmented benchmark circuits

XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt

14 / < 1 sec.

14 / < 1 sec.

12 / < 1 sec.

10 / < 1 sec.

17 / < 1 sec.

7 / < 1 sec.

11 / 1 sec.

12 / < 1 sec.

12 / < 1 sec.

10 / 1 sec.

0-40 48-67 69-70

0-40 44-61 63-66

0-36 40-55 61-70

0-41 50-68 70-71

0-20 23-55 58

0-37 243-258

0-36 110-127

0-46 59-66

0-33 135-151

0-29 380-396

6* / 2 sec.

6* / 4 sec.

6* / 4 sec.

6* / 3 sec.

9* / 4 sec.

2* / 4 sec.

6* / < 1 sec.

6* / < 1 sec.

6* / 1 sec.

4* / < 1 sec.

0-27 64-98

0-34 64-91

0-33 88-116

0-29 52-84

0-19 21-31 116-139

0-33 216-236

0-19 64-98

0-19 27-61

0-25 214-238

0-27 177-195

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

16 15 13 4 0

20 19 4 3 0

20 3 0

20 9 5 1 0

20 17 9 7 0

24 4 3 1 0

28 3 0

(63, 19, 16)

(55, 26, 20)

(51, 22, 24)

(47, 18, 28)

c432

13 / 2 sec

12 / 25 sec

12 / 1 sec

9* / 24 sec

-

-

0-23 55-69 81-90

0-21 69-83 139-150

0-22 26-41 87-96

0-16 23-39 72-86

no results after two days run

no results after two days run

9* / 16 sec

9* / 21 sec

9* / 12 sec

9* / 10 sec

17* / 646 sec.

6*/ 1359 sec.

0-13 22-40 46-61

0-13 18-36 169-184

0-13 15-32 91-107

0-13 18-32 57-76

0-21 185-192 264-281

0-21 82230-82255

14 9 8 3 0

14 13 11 4 0

14 11 7 1 0

14 13 3 2 0

22 11 2 1 0

22 15 12 9 0

(49, 40, 14)

(48, 39, 22)

c499

c1355

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

42

XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt

17 / 1827 sec.

16 / 2 sec.

11 / 1 sec.

10 / 956 sec.

11 / < 1 sec.

10 / 3 sec.

9 / 1 sec.

10 / 1 sec.

17 / 1 sec.

14 / 28 sec.

0-15 17-39 47-64 124-137

0-32 51-76 393-404

0-46 70-92 95

0-38 50-69 209-220

0-34 51-76 100-108

0-23 117-151 397-407

0-26 90-123 186-194

0-25 89-122 197-206

0-23 29-68 130-134

0-27 308-338 410-418

9* / 287 sec.

9* / 219 sec.

6* / 14 sec.

9* / 95 sec.

9* / 254 sec.

3* / 569 sec.

3* / 395 sec.

3* / 442 sec.

9* / 36 sec.

2* / < 1 sec.

0-15 49-82 135-155

0-15 46-76 428-451

0-45 216-240

0-15 23-54 179-201

0-16 37-70 268-286

0-16 110-143 214-232

0-16 86-121 214-230

0-16 91-120 180-202

0-23 29-48 59-83

0-27 343-382

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

16 15 13 4 0

17 16 3 2 0

17 3 0

17 5 0

17 6 0

24 4 3 1 0

28 3 0

(71, 28, 16)

(70, 28, 17)

(69, 28, 24)

(68, 24, 28)

c880

11 / 1326 sec.

9* / 831 sec.

9* / 1839 sec.

15* / 5832 sec.

20 / 16072 sec.

16 / 4583 sec.

19 / 37994 sec.

15 / 21436 sec.

9 / 3 sec.

0-18 326-341 364-378

0-17 149-164 219-234

0-15 96-111 202-219

0-19 316-330 449-457

0-19 263-273 291-301 315-316

0-19 29-39 312-321 441-443

0-19 100-110 472-482 492-493

0-21 168-177 280-289

0-27 337-347 362

9* / 594 sec.

9* / 214 sec.

9* / 123 sec.

15* / 613 sec.

17* / 906 sec.

15* / 100 sec.

14* / 439 sec.

14* / 520 sec.

7* / 3 sec.

0-15 220-235 446-463

0-15 170-187 231-246

0-15 96-111 202-219

0-19 316-330 449-457

0-19 345-355 437-449

0-19 48-57 224-237

0-19 167-177 364-376

0-20 183-192 466-476

0-27 58 332-342

16 5 4 3 0

16 11 3 2 0

16 11 6 5 0

20 17 0

20 6 5 3 0

20 9 5 1 0

20 10 5 1 0

21 5 2 1 0

28 3 0

(50, 27, 16)

(44, 27, 20)

(42, 28, 21)

(40, 11, 28)

c1908

17 / 1 sec.

13 / 2 sec.

14 / 8 sec.

16 / 1 sec.

16 / 2 sec.

13 / 2 sec.

10 / 1 sec.

13 / < 1 sec.

21 / 2 sec.

16 / 12 sec.

0-220 223-243 257-274 279-283

0-237 272-289 306-314

0-238 340-357 359-366

0-209 211-260 264-265

0-242 266-284

0-238 261-282 285

0-242 249-267

0-246 253-267

0-223 240-266 270-274

0-204 214-242 329-348

9* / 177 sec.

6* / 56 sec.

9* / 151 sec.

6* / 46 sec.

6* / 171 sec.

6* / 57 sec.

6* / 164 sec.

6* / 167 sec.

6* / 240 sec.

9* / 830 sec.

0-15 18-217 390-438

0-215 344-392

0-15 17-210 311-365

0-80 88-268

0-203 207-264

0-87 115-288

0-205 207-262

0-206 232-286

0-213 404-445

0-26 29-210 240-284

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

20 9 5 1 0

20 15 5 4 0

20 15 7 4 0

20 15 8 7 0

20 15 9 2 0

24 4 3 1 0

27 8 7 1 0

(265, 42, 16)

(262, 40, 20)

(256, 33, 24)

(254, 31, 27)

c2670

19 / 811 sec.

19 / 5 sec.

18 / 8 sec.

18 / 1 sec.

12 / 100 sec.

0-24 26-41 43-66 76-112 310-332 412-414

0-23 28-77 81-103 106-132 192-195

0-22 48-71 86-117 191-212 221-226

0-24 82-106 109-133 138-156

0-27 739-766 1319-1344

9* / 944 sec.

9* / 812 sec.

6* / 9 sec.

9* / 76 sec.

8* / 19396 sec.

0-15 126-217 463-482

0-15 152-176 243-329

0-19 3908-3994

0-23 83-106 135-180

0-27 577-601 2556-2584

16 11 9 7 0

16 12 6 1 0

20 19 4 3 0

24 4 3 1 0

28 3 0

 (128, 61, 16)

(107, 50, 20)

(94, 40, 24)

(82, 31, 28)

c3540

22 / 63 sec.

19 / 2376 sec.

18 / 17 sec.

0-146 148-169 212-235 281-300

357-358

0-171 199-218 248-268 370 371

0-147 150-176 234-256 279-295

9* / 9399 sec.

9* / 7238 sec.

6* / 10612 sec.

0-19 156-282 424-491

0-19 103-268 300-328

0-146 12488-12555

20 6 5 3 0

20 9 5 1 0

20 19 4 3 0

(215, 76, 20)

c5315

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

43

XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt

19 / 245 sec.

15 / 823 sec.

0-160 163-189 324-339

0-142 175-207 401-418

9* / 433 sec.

6* / 108 sec.

0-23 26-141 182-245

0-142 448-498

24 8 5 2 0

28 6 4 1 0

(204, 79, 24)

(194, 68, 28)

18 / 61 sec.

16 / 7 sec.

19 / 20 sec.

9 / 2 sec.

0-22 416-433 447-466 531-549 560-

578 580-598

0-19 233-253 296-330 342-352

0-23 96-118 752-769

0-27 428-446

9* / 270 sec.

9* / 1111 sec.

10* / 198 sec.

6 / 2 sec.

0-15 210-241 437-506

0-19 669-705 917-946

0-23 96-112 1619-1642

0-27 1078-1096

16 10 9 6 0

20 6 5 3 0

24 4 3 1 0

28 3 0

(118, 36,16)

(87, 25, 20)

(65, 25, 24)

(47, 8, 28)

c6288

21 / 4 sec.

21 / 9 sec.

21 / 4 sec.

15 / 5 sec.

0-172 180-209 213-260 295-315

318-319

0-167 169-189 224-281 322-341

377-383

0-177 184-214 221-260 264-275

0-202 211-240 259-280

6* / 2383 sec.

6* / 61 sec.

6* / 1 sec.

6* / < 1 sec.

0-79 12609-12802

0-79 987-1180

0-23 163-399

0-27 127-353

20 19 4 3 0

20 6 4 1 0

24 7 2 1 0

28 9 5 1 0

(274, 45, 20)

(261, 34, 24)

(255, 38, 28)

c7552

Table 9: Results of the new generator for segmented benchmark circuits

N_PER XOR / time Applicable Residues p(x) (n,m’,k) Ckt

4

4

2

4

4

6

2

1

2

6.5

3 / < 1 sec.

3 / < 1 sec.

3 / < 1 sec.

3 / < 1 sec.

6 / < 1 sec.

2 / 1 sec.

6 / < 1 sec.

3 / < 1 sec.

6 / 1 sec.

2 / 12 sec.

0-62

0-62

0-62

0-62

0-19 27-61

0 - 19 151 - 185

0 - 19 21 - 55

0-54

0 - 23 208 - 234

0 - 27 53 - 71

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

16 15 13 4 0

20 19 4 3 0

20 3 0

20 9 5 1 0

20 17 9 7 0

24 4 3 1 0

28 3 0

(63, 19, 16)

(55, 26, 20)

(51, 22, 24)

(47, 18, 28)

c432

2

2

2

3

3.5

1

6 / 1 sec.

6 / 3 sec.

6 / 2 sec.

6 / 1 sec.

3 / 1 sec.

6 / 9193 sec.

0 - 13 43 - 77

0 - 13 156 - 190

0 - 13 24 - 58

0 - 13 20 - 54

0 - 48

0 - 21 12689 - 12714

14 9 8 3 0

14 13 11 4 0

14 11 7 1 0

14 13 3 2 0

22 11 2 1 0

22 15 12 9 0

(49, 40, 14)

(48, 39, 22)

c499

c1355

4

5

3

5.5

5.5

6

7

7.5

5.5

3

6 / 3 sec.

6 / < 1 sec.

6 / < 1 sec.

3 / < 1 sec.

6 / < 1 sec.

2 / 9 sec.

2 / 7 sec.

2 / 4 sec.

6 / < 1 sec.

2 / 9 sec.

0 - 15 62 - 116

0 - 15 46 - 100

0 - 15 27 - 81

0 - 70

0 - 16 42 - 94

0 - 16 97 - 149

0 - 16 54 - 106

0 - 16 71 - 123

0 - 23 25 - 69

0 - 27 146 - 185

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

16 15 13 4 0

17 16 3 2 0

17 3 0

17 5 0

17 6 0

24 4 3 1 0

28 3 0

(71, 28, 16)

(70, 28, 17)

(69, 28, 24)

(68, 24, 28)

c880

4

6.5

5.5

2.5

6

6 / 108 sec.

6 / 295 sec.

6 / 2635 sec.

2 / 1923 sec.

6 / 400 sec.

0 - 15 508 - 541

0 - 15 570 - 603

0 - 15 6637 - 6670

0 - 19 2507 - 2530

0 - 19 714 - 737

16 5 4 3 0

16 11 3 2 0

16 11 6 5 0

20 17 0

20 6 5 3 0

(50, 27, 16)

(44, 27, 20)

c1908

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

44

N_PER XOR / time Applicable Residues p(x) (n,m’,k) Ckt

3

3.5

1

9.5

6 / 1159 sec

6 / 65 sec.

6 / 121 sec.

3 / 34 sec.

0 - 19 1668 - 1691

0 - 19 107 - 130

0 - 20 566 - 586

0 - 27 471 - 482

20 9 5 1 0

20 10 5 1 0

21 5 2 1 0

28 3 0

(42, 28, 21)

(40, 11, 28)

3

9

5

2

1

4

3

3

4.5

7

3 / < 1 sec.

3 / < 1 sec.

6 / 341 sec.

3 / < 1 sec.

3 / < 1 sec.

3 / < 1 sec.

3 / 1 sec.

3 / 1 sec.

3 / < 1 sec.

6 / 1159 sec.

0-264

0-264

0 - 15 17 - 265

0 - 261

0 - 261

0 - 261

0 - 261

0 - 261

0 - 255

0 - 26 29 - 255

16 5 4 3 0

16 6 4 1 0

16 15 12 10 0

20 9 5 1 0

20 15 5 4 0

20 15 7 4 0

20 15 8 7 0

20 15 9 2 0

24 4 3 1 0

27 8 7 1 0

(265, 42, 16)

(262, 40, 20)

(256, 33, 24)

(254, 31, 27)

c2670

6

6.5

9.5

11

14.5

3 / 2 sec.

3 / 1 sec.

3 / 20 sec.

6 / 56 sec.

2 / 1273 sec

0-127

0-127

0-106

0-23 30-99

0-27 310-363

16 11 9 7 0

16 12 6 1 0

20 19 4 3 0

24 4 3 1 0

28 3 0

 (128, 61, 16)

(107, 50, 20)

(94, 40, 24)

(82, 31, 28)

c3540

13.5

11

7.5

5.5

14

6 / 12087 sec.

6 / 1634 sec.

6 / 576 sec.

6 / 177 sec.

3 / 37 sec.

0 - 15 47 - 258

0 - 19 27 - 221

0 - 19 22 - 216

0 - 23 25 - 204

0 - 193

20 6 5 3 0

20 9 5 1 0

20 19 4 3 0

24 8 5 2 0

28 6 4 1 0

(215, 76, 20)

(204, 79, 24)

(194, 68, 28)

c5315

11.5

7.5

4.5

3

3 / 3 sec.

6 / 44 sec.

6 / 5 sec.

4 / 3 sec.

0 - 117

0 - 19 57 - 123

0 - 23 94 - 134

0 - 27 526 - 544

16 10 9 6 0

20 6 5 3 0

24 4 3 1 0

28 3 0

(118, 36,16)

(87, 25, 20)

(65, 25, 24)

(47, 8, 28)

c6288

21.5

6

4

4

3 / 8 sec.

3 / 4 sec.

3 / 8 sec.

3 / 7 sec.

0 - 304

0 - 273

0 - 260

0 - 254

20 19 4 3 0

20 6 4 1 0

24 7 2 1 0

28 9 5 1 0

(274, 45, 20)

(261, 34, 24)

(255, 38, 28)

c7552

8. REFERENCES
[1] F. Brglez and H. Fujiwara. 1985. A neutral netlist on ten

combinational benchmark circuits and a target translator

in FORTRAN. In Proceedings of the International

Symposium on circuits and systems (June, 1985).

[2] Mohamed H. El-Mahlawy. 1995. Automatic

Measurement of Digital Circuits. M.Sc. Thesis. Military

Technical College, Egypt.

[3] M. El Said Gohniemy, S. Fadel Bahgat, Mohamed H. El-

Mahlawy, and E. E. M. Zouelfoukkar. 1996. A Novel

Microcomputer Based Digital Automatic Testing

Equipment using Signature Analysis. In Proceedings of

the IEEE conference on Industrial Applications in Power

Systems Computer Science and Telecommunications

(13-16 May 1996), 140-144.

[4] M. H. El-Mahlawy. 2000. Pseudo-Exhaustive Built-In

Self-Test for Boundary Scan. Ph.D. Thesis. Kent

University, U.K.

[5] Paul H. Bardell, Willian H. McAnney, Jacob Savir. 1987.

Built-In test for VLSI: pseudorandom techniques. John

Wiley and Sons.

[6] S. W. Golomb. 1982. Shift Register Sequences. Laguna

Hills CA: Aegean Park Press.

[7] Mohamed H. El-Mahlawy. 2015. Signature Multi-Mode

Hardware-Based Self-Test Architecture for Digital

Integrated Circuits. In Proceedings of the IEEE

International Conference on Electronics, Circuits, &

Systems (6-9 Dec. 2015), 437-441.

[8] Sherif I. Morsy, Mohamed H. El-Mahlawy, Gouda I.

Mohamed. 2013. Hybrid based Self-Test Solution for

Embedded System on Chip. International Journal of

Computer Applications, Vol. 84, No. 12, (Dec. 2013), 7-

14.

[9] Mohamed H. El-Mahlawy and A. Seddik. 2007. Design

and Implementation of New Automatic Testing System

for Digital Circuits Based on the Signature Analysis. In

Proceedings of the 12th International Conference on

Aerospace Sciences & Aviation Technology (ASAT-12)

(May 2007), CRS-9-1 - CRS-9-12, Egypt.

[10] Mohamed H. El-Mahlawy, A. Abd El-Wahab, and A.S.

Ragab. 2008. FPGA Implementation of The Portable

Automatic Testing System for Digital Circuits. In

Proceedings of the 6th International Conference of the

Electrical Engineering (ICEENG-6) (May 2008), EE126-

1 - EE126-24, Egypt.

[11] Parag K. Lala. 1997. Digital circuit testing and

testability. Academic Press.

Communications on Applied Electronics (CAE) – ISSN : 2394-4714

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, April 2016 – www.caeaccess.org

45

[12] Angela Krstic, and Kwang-Ting (Tim) Cheng. 1998.

Delay Fault Testing for VLSI Circuits. Kluwer Academic

Publishers.

[13] Mukund Sivaraman, and Andrzej J. Strojwas. 1998. A

unified Approach for Timing Verification and delay

Fault Testing. Kluwer Academic Publishers.

[14] Alexander Miczo. 2003. Digital Logic Testing and

Simulation. John Wiley & Sons.

[15] Mohamed H. El-Mahlawy, and Winston Waller. 2000.

An efficient algorithm to design convolved LFSR/SR. In

Proceedings of the 17th National Radio Science

Conference (22-24 Feb. 2000), C23 (1-10), Egypt.

[16] Mohamed H. El-Mahlawy, and Winston Waller. 2000.

An efficient algorithm to partition the combinational

circuits for pseudoexhaustive testing. In Proceedings of

the 17th National Radio Science Conference, (22-24 Feb.

2000), C24 (1-11), Egypt.

[17] E. J. McCluskey and S. Bozorgui-Nesbat. 1981. Design

for autonomous test. IEEE transaction on computers Vol.

C-30, No. 11, (Nov. 1981), 866-875.

[18] E. J. McCluskey. 1984. Verification testing-A

pseudoexhaustive test technique. IEEE transaction on

computers Vol. C-33, No. 6 (June 1984), 541-546.

[19] Zeev Barzilai, Jacob Savir, George Markowsky, and

Merlin G. Smith. 1981. The weighted syndrome sums

approach to VLSI testing. IEEE Transactions on

Computers, Vol. C-30, No. 12 (Dec. 1981), 996-1000.

[20] D. T. Tang and L. S. Woo. 1983. Exhaustive test pattern

generation with constant weight vectors. IEEE

transaction on computers, Vol. C-32, No. 12 (Dec. 1983),

1145-1150.

[21] L. -T. Wang and E. J. McCluskey. 1986. Condensed

linear feedfack shift register (LFSR) testing - A pseudo-

exhaustive test technique. IEEE transaction on computers

Vol. C-35, No. 4 (April 1986), 367-370.

[22] L. -T. Wang and E. J. McCluskey. 1988. Circuits for

pseudoexhaustive test pattern generation. IEEE

transaction on computer-aided design, Vol. 7, No. 10,

(Oct. 1988) 1068- 1080.

[23] S. B. Akers. 1985. On the use of linear sums in

exhaustive testing. Digest of papers, 15th Annual

International on Fault Tolerant Computing Symposium

(1985), 148-153.

[24] N. Vasanthavada, P. N. Marinos. 1985. An operationally

efficient scheme for exhaustive test-pattern generation

using linear codes. In Proceedings of the International

Test Conference (Nov. 1985), 476-482.

[25] Zeev Barzilai, Don Coppersmith, and Arnold L.

Rosenberg. 1983. Exhaustive generation of bit patterns

with applications to VLSI self-testing. IEEE Transactions

on Computers, Vol. C-32, NO. 2 (Feb. 1983), 190-194.

[26] Dimitrios Kagaris and Spyros Tragoudas. 1993. Cost-

effective LFSR synthesis for optimal pseudoexhaustive

BIST test sets. IEEE transactions on very large scale

integration systems, Vol. 1, NO. 4 (Dec. 1993), 526-536.

[27] Srinivasan, R., S. K. Gupta, and M. A. Breuer. 1993.

Novel test pattern generators for pseudoexhaustive

testing. In Proceedings of the International Test

Conference (1993), 1041-1050.

[28] Srinivasan, R., S. K. Gupta, and M. A. Breuer. 2000.

Novel test pattern generators for pseudoexhaustive

testing. IEEE transaction on computers Vol. 49, No. 11

(Nov. 2000), 1228-1239.

[29] Z. Barzilai, D. Coppersmith, and A. Rosenberg. 1983.

Exhaustive Bit Pattern Generation in Discontiguous

Positions with Applications to VLSI Testing. IEEE

Transaction on Computers, Vol. 32, No. 2 (Feb. 1983),

190-194.

[30] Mohamed H. El-Mahlawy, and Winston Waller. 2004. A

New Segmentation Approach for Pseudoexhaustive

Testing of Combinational Circuits. In Proceeding of the

4th International Conference of the Electrical Engineering

(ICEENG-4) (Nov. 2004), 251-265, Egypt.

