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ABSTRACT 

In this paper, an efficient algorithm to design convolved 

LFSR/SR (Linear Feedback Shift Register / Shift Register) for 

the pseudo-exhaustive testing (PET) is presented as far as the 

lengths of the test set and hardware overhead are concerning. 

In this algorithm, an efficient search to reduce the constraint 

in the size of the shift register (SR) segment and makes an 

efficient search to restrict on the number of feed forward 

stages into two stages at most and no restriction on the size of 

the SR segment. The residues are assigned such that minimum 

hardware overhead is achieved. This search generates several 

possible solutions for each case, from which the minimal 

hardware solutions may be chosen. In addition, a new test 

pattern generator (TPG) for the PET that bridges the gap 

between convolved LFSR/SR and permuted LFSR/SR is 

presented. It is considered to be the optimal pseudo-

exhaustive test pattern generator (PETPG) as far as the 

lengths of the test set and hardware overhead are concerning. 

An efficient residue assignment for the inputs of the CUT to 

reduce the hardware overhead is presented. With small 

number of permutations in the assigned residues, the chance 

of obtaining efficient solutions may be increased. The 

presented generator in this paper is considered the general 

form of the PETPG. The simple LFSR/SR, the permuted 

LFSR/SR, and convolved LFSR/SR are considered the special 

case. The experimental results for all combinational 

benchmark circuits [1] indicate the superiority of the 

presented approach with respect to previous published works. 
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1. INTRODUCTION 
Traditionally, the CUT is tested by the automatic test 

equipment (ATE), which can store the applied test patterns 

and the expected test response of the CUT [2-3]. In the Built-

In Self-Test (BIST), extra circuitry is added around the 

original CUT to test itself [4]. The BIST incorporates a TPG 

such as autonomous linear feedback shift register (ALFSR) 

shown in Figure 1, and a test response compactor (TRC) such 

as an LFSR shown in Figure 2 and an multi-input shift-

register (MISR) shown in Figure 3 [5-6]. Besides, a BIST 

controller is incorporated into the system (core) logic to 

realize self-test operations [4, 7]. Figure 1, Figure 2, and 

Figure 3 have ci’s as binary constants, ci = 1 implies that a 

connection exists, while ci = 0 implies that there is no 

connection. 

The basic BIST execution parallel BIST or test-per-clock 

technique is shown in Figure 4. In the parallel BIST, the test 

patterns are applied from the TPG and test responses are cap-

tured in the TRC (as MISR) every clock cycle [7-10]. 

 
Fig. 1:  ALFSR as the TPG. 

 

Fig. 2: LFSR as the TRC in serial BIST 

 

Fig. 3: MISR as the TRC in parallel BIST. 

  

Fig. 4: Basic parallel BIST architecture. 

There are four main testing types in the BIST architecture. 

They are exhaustive testing [4], pseudo-random testing [5-6], 

deterministic testing [11-14], and the pseudo-exhaustive 

testing (PET) [4, 15-18]. In this paper, the PET is selected to 

study. The PET approach retains almost all benefits of an 

exhaustive testing but usually requires far fewer test patterns. 

The time required for the PET depends on the sizes of the 

output cones, shown in Figure 5. For circuits with restricted 
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output dependency, the PET provides an alternative test 

method. The choice of the PET depends on whether or not any 

combinational circuit outputs depend on all of the circuit 

inputs. If any circuit output depends on all of its inputs, a 

partitioning (or segmentation) test technique must be used to 

test these circuits [4, 16]. The PET reduces the testing time to 

a feasible workable value.  

 

Fig. 5:  Segmentation approach in the PET. 

2. PREVIOUS RESEARCH 
Many single-test pattern generators were proposed for the 

PET. Examples are syndrome driver counters (SDCs) [19], 

constant-weight counters (CWCs) [20], condensed LFSRs 

[21], cyclic LFSRs [22], combined LFSR and XOR gates 

(LFSR/XORs) [23-24], combined LFSR and shift register 

(simple LFSR/SRs) [25], permuted LFSR/SRs [26], and 

convolved LFSR/SRs [15, 27-28]. It has been found the 

PETPGs based on the universal test set method require longer 

test lengths than the PETPGs based on the output-specific test 

set method [4, 27-28]. Convolved LFSR/SR is a generator 

based on the output-specific approach. It is considered to be 

the suitable PETPG as far as the lengths of test set and 

hardware overhead are concerning. In [27-28], the size of shift 

register segment is constrained to have a desired minimum 

length to reduce the number of feed forward stages. This 

constraint weakens the potential of using convolved LFSR/SR 

and in a lot of cases, the number of XOR gates needed for 

convolved LFSR/SR is high. Sometimes, the required search 

time to generate the minimal test set is large, or the search 

procedure requires the test set length of greater than the 

minimal test set. Dimitrios Kagaris and Spyros Tragoudas 

[26] have suggested a permuted LFSR/SR which is a simple 

LFSR/SR that drives a permuted set of inputs. A simple 

LFSR/SR, which is not capable of generating the optimal test 

set length because of fixed assignment of residues, may 

become feasible through reassigning the residues. From the 

results in [26], additional segmentation cells are required to 

find an applicable primitive polynomial. 

This paper introduces an efficient approach to design a 

generator that generates a pseudo-exhaustive test pattern set. 

It is required to design a generator with minimal test length 

and minimal hardware overhead. The algorithm to design the 

convolved LFSR/SR provides efficient search iteration for 

residue assignment to the inputs of the CUT so as to increase 

the number of potential solutions and thus reduce the 

hardware overhead. In addition, a new generator which 

bridges the gap between convolved LFSR/SR and permuted 

LFSR/SR is presented. With small number of permutations in 

the assigned residues, the chance of obtaining efficient results 

may be increased. A simple efficient heuristic approach for 

permutation is presented. The new generator is considered the 

general form of the PETPG. The experimental results indicate 

the efficiency of the presented approach. The results also 

show that the insertion of additional segmentation cells 

required by the method outlined in [26] is not required.  

The basic concept of the PET will be started in the next 

section. The new algorithm to design the convolved LFSR/ 

SR as the PETPG is presented in section 4. Then, the new 

PETPG is presented in section 5. The experimental results 

will be in section 6 and the conclusions in section 7. 

3. BASIC CONCET OF THE PST 
The combinational CUT with n inputs and m outputs is 

modelled as a direct acyclic graph. The nodes represent gates 

and the interconnection signals are represented by edges. Each 

output cone of the circuit forms a subgraph need not be 

disjoint. The dependency set, Di, of the output cone i is 

considered the set of the primary inputs and the pseudo-

primary inputs that feed it directly or affect it through another 

node. The dependency, |Di|, of the output cone i is the car-

dinality of its dependency set. Let k be the maximum value 

among the dependencies of the m output cones. The circuit 

can be characterized as an (n, m, k) circuit. The circuit is 

segmented into m output cones, and each cone is exhaustively 

tested. The test ensures detection of all detectable 

combinational faults with a single-test pattern within 

individual cones of the CUT without fault simulation. The 

time required for the PET depends on the sizes of the output 

cones. 

 The first w stages of the (n, w) simple LFSR/SR are 

configured as an LFSR with primitive polynomial p(x) of 

degree w.  The  remaining  n  -  w  stages  are  connected  as  a  

shift  register (SR). The residues R0, R1, R2… Rw-1 given by 1+ 

x1 + x2 + … + xw-1 represent the w test signals generated by the 

LFSR portion. These residues are fixed for LFSR portion 

independent of p(x). The remaining n - w residues (test 

signals) assigned to remaining n - w circuit inputs are linear 

combination of the residues of the LFSR portion. The residues 

Rw through Rn-1 are fixed by specific p(x). For an (n, w) simple 

LFSR/SR based on p(x), stage i generates the residue xi mod 

p(x) denoted as Ri. The minimal test set for the PET is 

generated when w equals k or the search procedure requires 

the test set length equals 2k. The primitive polynomial p(x) 

exhaustively exercises the dependency set Di = { d1, d2, …, 

dk},  if  and  only  if  the  k  residues, xdj mod p(x) and 1≤ j ≤ k 

are linearly independent [29]. 

Condition 1: For each output cone i, all residues Rdj, dj  Di, 

, 1≤ j ≤ |Di|, must be linearly independent.  

Definition 1: The residues assigned to a dependency set of an 

output cone that satisfies condition 1 is called applicable 

residues. 

Definition 2: A primitive polynomial p(x) that satisfies 

condition 1 for all dependency sets of the output cones is 

called an applicable polynomial. 

Example 1: The dependency sets of the (8, 6, 4) CUT are      

D0 = {0, 1, 2}, D1 = {0, 2, 3, 6}, D2 = {1, 4, 5, 6}, D3 = {0, 2, 

4, 5}, D4 = {3, 4, 5}, D5 = {0, 1, 2, 7}. The (8, 4) simple 

LFSR/SR based on p(x) = 1 + x3 + x4 is shown in Figure 6. 
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Fig. 6: The residue for (8, 4) LFSR/SR. 

In Table 1, residues from R0 to R7 are calculated based on xi 

mod p(x) of Ri in the polynomial form and the digital form. 

Table 1. Residues from R0 to R7 of p(x) = 1 + x3 + x4 

Residue  
Residue in the 

polynomial form 

Residue in the 

binary form 

R0 1 0111 

R1 x 1011 

R2 x2 1101 

R3 x3 1110 

R4 1 + x3 1001 

R5 1 + x + x3 1101 

R6 1 + x + x2 + x3 1111 

R7 1 + x + x2  1110 

Residues are considered for assignment to CUT inputs in the 

order generated by successive stages of a simple LFSR/SR. 

To check, for example, if the residues assigned to D1 are 

applicable residues or not, the residues, R0, R2, R3, and R6, are 

assigned to the circuit inputs, I0, I2, I3, and I6, respectively. 

(The dependency set, D1, which equals {0, 2, 3, 6}, is also 

referred to as a 4-subset of 8.) Matrix MD1 is arranged, and 

transformed to the upper triangle matrix, UD1, whose 

determinant equals 1. Then, these residues are applicable 

residues. 
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These checks are repeated for all dependency sets. The 

residues assigned to D2, and D5 are linearly dependent 

because Matrix MD2 is arranged, and transformed to the upper 

triangle matrix, UD2, whose determinant equals 0, and the 

determinant of MD5 is equals 0, also. Therefore, the 

polynomial p(x) = 1 + x3 + x4 is not applicable. 
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Lemma 1 [27-28]: An (n, w) multiple LFSR/SR exists for 

generating the PET for an (n, m, k) circuit if and only if there 

exists an (n, w) convolved LFSR/SR for the circuit where the 

length of each SR segment is at least w. 

Example 2: For the (15, 4) simple LFSR/SR based on p(x) = 

1 + x3 + x4. For each stage i in the (15, 4) simple LFSR/SR, 

the residues will be calculated based on xi mod p(x). An initial 

seed for the LFSR stages is 1000 is seen to be shifted from the 

left during the initialization phase. For the (15, 4) simple 

LFSR/SR, the initial seed is generated for all stages of the 

simple LFSR/SR and all patterns generated from all stages of 

the (15, 4) simple LFSR/SR in the initialization phase and the 

testing phase are shown in Table 2. In Table 2, stage 0 is 

considered the left-most bit of the pattern and stage 14 is 

considered the right-most bit of the pattern. In the last row of 

the second column of Table 2, the initial seed of all stages of 

(15, 4) simple LFSR/SR is shown by bold font which is the 

initial pattern in the testing phase. From example 1, the (8, 4) 

simple LFSR/SR based on p(x) cannot exhaustively test all 

output cones of the CUT. Using multiple LFSR/SR,  the  

applicable  residues  of  all output cones in example 1 are  0-3  

11-14  which  exhaustively test all output cones of the CUT. 

Figure 7 shows a multiple LFSR/SR, composed of two (4, 4) 

simple LFSR/SRs. Both simple LFSR/SRs are based on the 

same p(x). The initial seed of the first (4, 4) simple LFSR/SR 

is 1000 (the first row of the third column in Table 2). The 

initial seed of the second (4, 4) simple LFSR/SR is 1100 (the 

first row of the third column in Table 2). The contents of the 

second (4, 4) simple LFSR/SR will become 1000 after eleven 

clock cycles. Hence the first (4, 4) simple LFSR/SR generates 

R0 through R3 and the second (4, 4) simple LFSR/SR 

generates R11 through R14. This multiple LFSR/SR generates 

patterns to exhaustively test all output cones. Thus, the initial 

seeds can be manipulated to generate the desired residues 

from the simple LFSR/SRs. The length of each SR segment 

must be at least w (according to lemma 1) to work as 

independent simple LFSR/SRs, run in parallel.   

 

(a) Simple LFSR/SR. 

 

(b) Multiple LFSR/SR. 

Fig. 7: Multiple LFSR/SR as the special case of the 

convolved LFSR/SR. 

Table 2. Initial seed determination of the Simple 

LFSR/SR. 

Pattern number Initialization phase Testing phase 

1 100000000000000 100011110101100 

0 010000000000000   010001111010110 

2 001000000000000 001000111101011 

3 100100000000000 100100011110101 

4 110010000000000 110010001111010 

5 011001000000000   011001000111101 

6 101100100000000   101100100011110 

7 010110010000000 010110010001111 

8 101011001000000 101011001000111 

9 110101100100000 110101100100011 

01 111010110010000 111010110010001 

00 111101011001000 111101011001000 

02 011110101100100 011110101100100 

03 001111010110010 001111010110010 

04 000111101011001 000111101011001 

The initial seed 100011110101100 100011110101100 
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4. NEW ALGORITHM TO DESIGN THE 

CONVOLVED LFSR/SR 

4.1 Idea of the Residue Assignment 
For an (n, w) convolved LFSR/SR, all possible residues can 

be considered for input assignment. However, the number of 

possible residues increases exponentially with the degree of 

the primitive polynomial, p(x). In practice, only a few residues 

are considered for input assignment, Q. It is difficult to get the 

benefit of the convolved LFSR/SR without a good search 

algorithm to obtain the minimal hardware overhead solution 

in reasonable time. The source of hardware overhead of the 

convolved LFSR/SR is the number of XOR gates used to 

realize the individual feed forward (FF) stages. To minimize 

the area overhead, it is required to reduce the number of FF 

stages. The structure of the convolved LFSR/SR has been 

restricted to be one of the four forms in Figure 8. These forms 

restrict the number of FF stages into two stages at most. 

 

Fig. 8: Different forms of the convolved LFSR/SR. 

Form A consists of two parts, the first part is the LFSR 

portion with size w, and the second part is the SR segment a 

with size n - w. If applicable residues are assigned to all CUT 

inputs in this form and n - w ≥ w, the generator will be a 

multiple LFSR/SR and if applicable residues are assigned to 

all CUT inputs in this form and n - w < w, the number of FF 

stages will be one. Form B consists of two parts, the first part 

is a (w + tb, w) simple LFSR/SR, and the second part is the SR 

segment c with size n - (w + tb), where tb is the size of the SR 

segment b. If applicable residues are assigned to all CUT 

inputs in this form and n - (w + tb) ≥ w, the generator will be a 

multiple LFSR/SR and if applicable residues are assigned to 

all CUT inputs in this form and n - (w + tb) < w, the number of 

FF stages will be one. 

Form C consists of three parts, the first part is the LFSR 

portion with size w, the second part is the SR segment d with 

size td, and the third part is the SR segment e with size n - (w 

+ td). If applicable residues are assigned to all CUT inputs in 

this form, the number of FF stages will be at most two. If the 

size of two or one of the SR segments d and e is greater than 

or equal to w, the generator will be a multiple LFSR/SR or at 

most it is required to feed a residue at the input of the FF 

stage.  Form D consists of three parts, the first part is (w + tg, 

w) simple LFSR/SR, the second part is the SR segment h with 

size th, and the third part is the SR segment i with size n - (w + 

tg+ th). If applicable residues are assigned to all CUT inputs in 

this form, the number of FF stages will be at most two. If the 

size of at least one of the SR segments h and i is greater than 

or equal to w, the generator will be a multiple LFSR/SR or at 

most it is required to feed a residue at the input of the FF 

stage. 

This section presents the new algorithm to design the 

convolved LFSR/SR, referred to as NEW_CONV. There are 

two phases in the NEW_CONV. The first phase is to search for 

an applicable primitive polynomial using the candidate 

primitive polynomials. In the case of the existence of this 

polynomial, the convolved LFSR/SR will be a simple 

LFSR/SR. If no primitive polynomial is applicable, the second 

phase commences. This phase searches for a residue 

assignment to generate the convolved LFSR/SR in one of the 

four forms based on a primitive polynomial with minimum 

terms. All residues from 0 through (w - 1) are automatically 

assigned to the inputs 0 through (w - 1) and n - w residues of 

Q – w residues are assigned such that all output cones may be 

exhaustively tested. The procedure for selecting n - w residues 

of Q - w residues is required to achieve minimal hardware. 

The search procedure in this phase selects (n - w) residues of 

(Q - w) residues in a manner which restricts  the number of FF  

stages to a maximum of two without restriction in the size of  

the SR segment to get the convolved LFSR/SR in any of the 

forms shown in Fig. 8. The search problem is converted to 

generate possible choices that satisfy these constraints. 

An example is given for simplicity. It is taken for the (12, m, 

4) CUT, and (12, 4) convolved LFSR/SR with Q = 15. There 

are three possible choices for the (12, 4) convolved LFSR/SR 

of form A. In Table 3,  to Table 6, the residue assignment for 

CUT inputs utilizes those residues assigned to 1 and neglects 

residues assigned to 0. Basically in residue assignment, R0 

through R3 are assigned to inputs 0 through 3. In the first 

possible choice, R5 through R12 are assigned to inputs 4 

through 11 and check for applicable residues for all output 

cones. If any output cone does not satisfy condition 1, then go 

to the next possible choice in form A. If all output cones 

satisfy condition 1, then a suitable convolved LFSR/SR of 

form A is found. In general, the number of possible choices in 

the case of form A is referred to NA according to equation (1). 

NA = Q - n.                 (1) 

Table 3. Form A with n =12, w =k = 4, and Q = 15. 

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

0 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 0 
0 0 0 0 1 1 1 1 1 1 1 

There are forty-two possible choices for the (12, 4) convolved 

LFSR/SR of form B and form C for residue assignment.  

Table 4 and Table 5 illustrate the possible choices of form B 

and form C for (12, 4) convolved LFSR/SR, respectively. For 

the possible choices of form B and form C, if all output cones 

satisfy condition 1 after residue assignment, then a suitable 

convolved LFSR/SR of form B and form C is found. In 

general, the number of possible choices in the case of form B 

and form C is referred to NBC according to equation (2). 



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nQ

i
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There are sixty-three possible choices for the (12, 4) 

convolved LFSR/SR of form D for residue assignment.  

Table 6 illustrates the possible choices of form D for (12, 4) 

convolved LFSR/SR. For the possible choices of form D, if all 

output cones satisfy condition 1 after residue assignment, then 

LFSR portion

LFSR portion

LFSR portion

LFSR portion

(a) Form A

(b) Form B

(c) Form C

(d) Form D

a

b c

d e

g h i

SR segment

SR segment

SR segment SR segment

SR segment SR segment

Feed forward stage

Feed forward stage
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a suitable convolved LFSR/SR of form D is found. In general, 

the number of possible choices in the case of form D is 

referred to ND according to equation (3). 

 
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D jwninQN   (3) 

The search is divided into two basic searches. The first search 

is the partial search based on form A, B, and C. The number 

of the possible choices in the partial search will be the sum of 

NA and NBC. The second search is the full search by using all 

possible choices. The number of those patterns in the full 

search will be the sum of NA, NBC, and ND. In the previous 

equations, w is the degree of the primitive polynomial p(x), Q 

is the limit of the number of the available residues for residue 

assignment, and n is the number of CUT inputs. When Q 

increases, the number of possible choices is increased. This 

may increase the chance to get several solutions with minimal 

hardware overhead in the form of multiple LFSR/SRs. 

Table 4. Form B with n =12, w =k = 4, and Q = 15. 

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 1 1 1 1 1 

1 1 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 
1 1 1 0 0 1 0 0 0 1 1 

1 1 1 0 0 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 
1 1 1 0 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 
1 1 1 0 1 1 1 1 0 1 1 

1 1 1 0 1 1 1 1 1 0 1 

1 1 1 0 1 1 1 1 1 1 0 

Table 5. Form C with n =12, w =k = 4, and Q = 15. 

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 0 1 1 0 1 1 0 1 1 1 

1 0 1 1 1 0 1 1 1 0 1 

1 1 0 1 1 0 1 0 1 0 1 

1 1 0 1 1 1 0 1 0 1 0 

1 1 1 1 1 1 0 1 0 1 1 

1 1 1 1 1 1 1 0 1 0 1 

1 1 1 1 0 1 1 0 1 0 1 

1 1 1 1 0 1 1 1 0 1 0 

1 1 1 0 1 0 1 1 0 1 1 

1 1 1 0 1 0 1 1 1 0 1 

1 1 1 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 1 1 1 1 0 

1 1 1 0 1 0 1 0 1 0 1 

1 1 1 0 1 0 1 0 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 0 

Table 6. Form D with n =12, w =k = 4, and Q = 15. 

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 1 0 1 0 0 0 0 0 0 1 

1 1 1 1 1 0 0 0 0 0 0 

1 1 1 0 1 0 0 0 0 0 1 

1 1 1 0 1 1 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 1 

1 1 1 0 0 1 1 0 0 0 0 

1 1 1 0 0 0 1 0 0 0 1 

1 1 1 0 0 0 1 1 0 0 0 

1 1 1 0 0 0 0 1 0 0 1 

1 1 1 0 0 0 0 1 1 0 0 

1 1 1 0 0 0 0 0 1 0 1 

1 1 0 0 0 0 0 0 1 1 0 

1 1 1 0 1 0 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 

1 1 1 0 0 0 1 0 0 0 0 

1 1 1 0 0 0 0 1 0 0 0 

1 1 1 0 0 0 0 0 1 0 0 

1 1 1 0 0 0 0 0 0 1 0 

1 0 1 0 1 0 0 0 0 0 1 

1 0 1 0 1 1 0 0 0 0 0 

1 0 1 0 0 1 0 0 0 0 1 

1 0 1 0 0 1 1 0 0 0 0 

1 0 1 0 0 0 1 0 0 0 1 

1 0 1 0 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 0 0 1 

1 0 1 0 0 0 0 1 1 0 0 

1 0 1 0 0 0 0 0 1 0 1 

1 0 1 0 0 0 0 0 1 1 0 

1 0 1 1 0 1 0 0 0 0 0 

1 0 1 1 0 0 1 0 0 0 0 

1 0 1 1 0 0 0 1 0 0 0 

1 0 1 1 0 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 0 1 0 

1 0 0 1 0 1 0 0 0 0 1 

1 0 0 1 0 1 1 0 0 0 0 

1 0 0 1 0 0 1 0 0 0 1 

1 0 0 1 0 0 1 1 0 0 0 

1 0 0 1 0 0 0 1 0 0 1 

1 0 0 1 0 0 0 1 1 0 0 

1 0 0 1 0 0 0 0 1 0 1 

1 0 0 1 0 0 0 0 1 1 0 

1 0 0 1 1 0 1 0 0 0 0 

1 0 0 1 1 0 0 1 0 0 0 

1 0 0 1 1 0 0 0 1 0 0 

1 0 0 1 1 0 0 0 0 1 0 

1 0 0 0 1 0 1 0 0 0 1 

1 0 0 0 1 0 1 1 0 0 0 

1 0 0 0 1 0 0 1 0 0 1 

1 0 0 0 1 0 0 1 1 0 0 

1 0 0 0 1 0 0 0 1 0 1 

1 0 0 0 1 0 0 0 1 1 0 

1 0 0 0 1 1 0 1 0 0 0 

1 0 0 0 1 1 0 0 1 0 0 

1 0 0 0 1 1 0 0 0 1 0 
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R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 0 0 0 0 1 0 1 0 0 1 

1 0 0 0 0 1 0 1 1 0 0 

1 0 0 0 0 1 0 0 1 0 1 

1 0 0 0 0 1 0 0 1 1 0 

1 0 0 0 0 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 0 1 0 

1 0 0 0 0 0 1 0 1 0 1 

1 0 0 0 0 0 1 0 1 1 0 

1 0 0 0 0 0 1 1 0 1 0 

The possible choices of forms B, C, and D consist of two 

parts. The first part is fixed in every portion in the form 

(shadow cells in Table 4, Table 5, and Table 6 besides the 

LFSR portion). The second part is variable. For every portion, 

the linear independence of the residue assignment of the fixed 

part is checked. If that check is linearly dependent, there is no 

need to continue the search for that portion and the procedure 

will move to the next portion in the form. If this check is 

linearly independent, the algorithm will continue with the 

residue assignment in that portion. 

Sometimes, if Rw, assigned to input w, is not an applicable 

residue with respect to residues R0 to Rw-1, the residue 

assignment using all possible choices of form B and form D 

does not satisfy condition 1. It is required to determine which 

applicable residue from w + 1 to ((Q- 1) - (n - w - 1)) assigned 

to input w. The search from the portion corresponding to the 

assignment input w to an applicable residue is started. So, it is 

not useful to begin the search from the first possible choice, 

and it is required to determine the first applicable residue to 

assign input w before the search begins. For high values of Q, 

the determination of the first applicable residue assigned to 

input w and the check of the fixed part of the first possible 

choice of every portion will save considerable search time. 

The applicable residues will take any form of the convolved 

LFSR/SR in Figure 8 when this assignment satisfies  

condition 1. If the assigned residues do not achieve  

condition 1 for any output cone, the search procedure 

progressively assigns residues to all inputs for another 

possible choice.  

From the explanation of the presented search, the residue 

assignment is restricted by the number of FF stages to be at 

most two with no restriction in the size of the SR segment. 

Residue assignment here is parallel, i.e., the search procedure 

assigns residues to all inputs of the CUT at the same time and 

checks if condition 1 is satisfied or not to obtain the 

convolved LFSR/SR in any of the forms shown in Figure 8. 

The restriction in the number of FF stages and lack of 

restriction in the size of the SR segment increases the chance 

of obtaining several solutions and from these solutions; the 

solution with the least hardware overhead may be selected. 

Example  3:  A  portion  from the possible choices of form B   

will  be  taken  to  demonstrate  how  the  search sequence 

occurs.  

R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

1 1 1 1 0 1 1 1 1 1 1 
1 1 1 1 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 

Using the first possible choice, residues 0-3, 4-7, 9-12 are 

assigned to the CUT inputs and check condition 1 of all 

output cones. If any output cone is linearly dependent, go to 

the next possible choice. For each possible choice in the 

portion, the residues 0-3, 4-7 are fixed. The linear  

independence  of  residues  0-3,  4-7  assigned  to  the  inputs  

0  through 7 is  first checked for all dependency sets of the 

output cones. If this check is linearly dependent, there is no 

need to continue the search in that portion and the procedure 

will exit from that portion to the first possible choice in the 

next portion. If this check is linearly independent, the 

algorithm will continue with the residue assignment in this 

portion. 

Example 4: The dependency sets of the output cones of the  

(12, 6, 4) CUT (Dj, 1 ≤ j ≤ 6) are {1, 3, 5, 11}, {2, 6, 7, 12}, 

{2, 3, 8, 10}, {9, 11, 12}, {3, 7, 9, 11}, {2, 10, 11}, 

respectively. 

Three solutions are achieved based the algorithm 

NEW_CONV for this CUT using primitive polynomial p(x) = 

1 + x3 + x4. The second column in Table 7 shows the 

applicable residues. In the first and second solution, it is 

required to feed R4 to the input of the FF stage. The rest of the 

SR segments are independent simple LFSR/SRs. The number 

of XOR gates required to realize the convolved LFSR/SR to 

exhaustively test all output cones is 3 in all solutions shown in 

Figure 9. Using the algorithm in [27-28], the following unique 

solution 0-6, 8-9, 12-14 is achieved. It is required to feed R7 

and R11 to the inputs of the first and second feed forward 

stage, respectively. The number of XOR gates required to 

realize the convolved LFSR/SR to exhaustively test all output 

cones is 4 shown in Figure 9d.  

Table 7. Different solutions for example 4 

Possible 

Solution 

Applicable 

residues  

Feeding 

residue 

XOR 

gates 

0 0-3, 5-6, 9-14 R4 3 

2 0-3, 5-7, 10-14 R4 3 

3 0-3, 5-8, 11-14 - 3 

 

(a) First solution of algorithm NEW_CONV. 

 

(b) Second solution of algorithm NEW_CONV. 

 

(b) Third solution of algorithm NEW_CONV. 
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(d) Solution of algorithm in [27-28]. 

Fig. 9: Several convolved LFSR/SRs. 

4.1 Algorithm NEW_CONV 
Input: The dependency sets of output cones, w (≥ k), Q, 

partial or full search, and the number of required solutions (S). 

Output: Applicable residues for CUT inputs and the required 

initial seed. 

1. Phase 1 

1.1 Retrieve all primitive polynomials or the subset of all 

primitive polynomials of degree w from a stored file and 

put them in queue L. 

1.2 Select the primitive polynomial, p(x) from L. 

1.3 Residues from R0 through Rn-1 are generated, based on 

p(x), using subroutine RESIDUE [4]. 

1.4 Condition 1 is checked for all dependency sets of the 

output cones. 

1.5 If condition 1 is satisfied for all dependency sets, then the 

corresponding p(x) is the applicable polynomial, store it 

as a solution and calculate the initial seed, discussed in 

example 2.  

1.6 If the number of solutions exceed S, exit. 

1.7 If there are other primitive polynomials in L, go to step 

1.3.  

1.8 If all candidate primitive polynomials are finished and no 

applicable polynomial exists, go to phase 2. 

2. Phase 2 

2.1 Select a primitive polynomial with minimum terms from 

L, and generate all residues (R0 through RQ-1) using 

subroutine RESIDUE in [4]. 

2.2 Determine the first applicable residue assigned to input 

w. 

2.3 If Rw is not the applicable residue to input w, then all 

possible choices of form B and form D will be ignored. 

2.4 If Rw is the applicable residue to input w and the full 

search is not selected, all possible choices of form D 

will be ignored. 

2.5 Through the generation of possible choices for residue 

assignment, do the following steps.  

2.5.1 Condition 1 of the assigned residues to the fixed 

part of the first possible choice of specific portion 

in any convolved LFSR/SR forms is checked for 

all dependency sets of the output cones. 

2.5.2 If this check is not satisfied, this portion is 

completely ignored and the next one is 

considered. Then, go to step 2.5.1. 

2.5.3 For each possible choice in the portion and the 

corresponding residue assignment, condition 1 is 

checked for all dependency sets of the output 

cones. If this condition is not satisfied, try the 

next one in the same portion. In the case of 

satisfying condition 1, the corresponding assigned 

residues are applicable residues to exhaustively 

test all output cones and then the initial seed is 

calculated. This result is stored as a solution. If 

the number of the solutions exceed S, exit. 

2.5.4 If a new portion begins, go to step 2.5.1. 

2.5.5 If the complete set of the generated possible 

choices is finished and L is not empty, go to step 

2.1. 

2.5.6 If the complete set of the generated possible 

choices is finished and L is empty, exit. 

Example 5: The dependency sets of output cones of the  

(24, 6, 10) CUT from 1 to 6 ( Dj, 1 ≤ j ≤ 6) are 

D0 = {0, 1, 3, 4, 8, 9, 10, 13, 16, 22} 

D1 = {0, 2, 3, 5, 6, 8, 11, 14, 17, 23} 

D2 = {1, 2, 4, 5, 7, 9, 12, 15, 18, 22} 

D3 = {0, 1, 2, 6, 7, 10, 11, 12, 19, 23} 

D4 = {3, 4, 5, 6, 7, 13, 14, 15, 20, 22} 

D5 = {8, 9, 10, 11, 12, 13, 14, 15, 21, 23} 

By using algorithm NEW_CONV, the first solution is as 

follows. There  are  two  SR  segments,  the  first  one  is  of  

size  3,  and  the  other  one  is  of  size  11 which is an 

independent (11, 10) simple LFSR/SR with the same 

primitive polynomial and different initial seed 

(01111111001). R12 feeds the input of the feed forward stage 

of the first SR segment to generate R13, R12 = x2 + x5 = R2 + 

R5. This residue needs one XOR gate. The convolved 

LFSR/SR for this circuit with its initial seed using 

NEW_CONV is shown in Figure 10a. From Figure 10a, the 

convolved LFSR/SR has three XOR gates and the test set 

length required is 210-1 (1023) which is the optimal test set 

length. This generator misses the all-zero seed so, this 

generator needs two initial seeds.  

The residue assignment according to algorithm in [27-28] will 

be 0-9, 50-60, 111-113. The upper bound of the number of 

required XOR gates is 8. The number of terms of R110 is 7 

(R110 = 1 + x2 + x3 + x4 + x5 + x7 + x9 = R0 + R2 + R3 + R4 + R5 

+ R7 + R9). The convolved LFSR/SR for this CUT with its 

initial seed is shown in Figure 10b. 

It is clear from example that the algorithm NEW_CONV, 

presented in this paper to design convolved LFSR/SR, is the 

best in terms of test set lengths and the hardware overhead 

compared to other generators [4]. The algorithm produces 

several solutions which provide the same minimal hardware 

overhead and the same optimal test set length, some of which 

are shown in Table 7. 
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(a) Convolved LFSR/SR using NEW_CONV. 

 (b) Convolved LFSR/SR using TPG. 

Fig. 10: Several convolved LFSR/SRs. 

Table 7. Different solutions of example 5. 

Possible Solution Applicable residues  XOR gates 

0 0-9 13-15 580-590  3 

2 0-9 15-17 388-398 3 

3 0-9 15-17 658-668   3 

4 0-9 15-17 826-836 3 

5 0-9 15-17 846-856   3 

6 0-9 16-18 680-690 3 

7 0-9 16-18 853-863   3 

8 0-9 16-18 997-1007 3 

9 0-9 16-19 127-136  3 

01 0-9 16-19 380-389 3 

5. DESIGN OF THE NEW GENERATOR 

IN THE PET 
Let π0 be an index default permutation of the n inputs of the 

CUT which signifies the order in which the corresponding 

flip-flops (stages) of the convolved LFSR/SR are linked. 

Consider an (n, m, k) CUT along with the notation that input Ii 

is assigned a unique index (label) i where 0 ≤ i ≤ n. The 

default permutation π0 of the inputs of the CUT is specified 

completely by n-tuple (0, 1, 2, 3 ... n - 1), let the set A = {I0, 

I1, I2, …, In-1}, and π0 = {0, 1, 2, 3 ... n - 1}.  

Figure 11 is considered the general scheme of the PETPG. In 

a convolved LFSR/SR and using the default permutation π0, 

inputs 0 through i are assigned to the residues R0 through Ri, 

and inputs i + 1 through n - 1 are assigned to the residues Ri+j 

through Ri+n-2. In the new generator, it is possible to change 

the default permutation to another permutation π. In Figure 11 

using permutation π, every CUT inputs are assigned to the 

residues according to permutation π0 except Iw+2 assigned 

Rw+1, Iw+1 assigned Rw+2, Ii+2 assigned Ri+j, and Ii+1 assigned 

Ri+j+1. So, the convolved LFSR/SR is considered a special 

case of the new generator. The simple LFSR/SR and the 

permuted LFSR/SR are considered special cases of the new 

generator as well. 

Using a specific primitive polynomial p(x), let β be the set 

containing all dependency sets of the output cones whose 

assigned residues are linearly dependent and |β| be the number 

of the dependency sets in β. In the case of the convolved 

LFSR/SRs, all dependency sets of the output cones must 

satisfy condition 1 so that β is an empty set. This restriction 

can be reduced to get a solution even if β is not an empty set. 

This is done by a small number of permutations of the 

assigned residues to the CUT inputs to make β an empty set. 

The permutation of the residues means the permutation of the 

CUT inputs assigned to those residues. The permutation of the 

CUT inputs may be useful in obtaining a PETPG with 

minimal test set length. The permutation of the inputs results 

in a routing overhead so the generator synthesis is done prior 

to the layout phase of the CUT, and that, therefore any 

rewiring issues are tackled in the overall layout of the CUT 

and the BIST circuitry as a whole. 

5.1 The Search to Obtain Minimum |Β| 
The search to get the minimum |β|, referred to as |β|min, is 

carried out either by searching in the candidate primitive 

polynomials or by using the proposed residue assignment, 

discussed in section 4 for a specific primitive polynomial. 

Choosing a small value of |β|min will reduce the required 

number of permutations that reduces the routing overhead. 

First, two useful definitions need to be introduced. 

Definition 3: An applicable primitive polynomial for 

permutation is the polynomial for which at least (m - |β|min) 

dependency sets of the output cones satisfy condition 1 before 

permutation. 

Definition 4: The applicable residues for permutation are 

produced by the residue assignment for the CUT inputs before 

permutation such that at least (m - |β|min) dependency sets of 

the output cones satisfy condition 1. 

The algorithm to design the new generator consists of two 

phases. The first phase is dedicated to search from the 

candidate primitive polynomials to find the applicable 

primitive polynomial for permutation and, with a small 

number of permutations; the set β may be an empty set. The 

generator resulting from this phase is the permuted LFSR/SR 

(the simple LFSR/SR with permutation π). In the second 

phase, the applicable residues for permutation can be found 

using the proposed residue assignment, discussed in section 4 

and, with a small number of permutations; the set β may be an 

empty set. The generator resulting from this phase is the new 

generator (convolved LFSR/SR with permutation). A 

combination of changing the assigned residues with a small 

number of permutations may increase the chance of obtaining 

a solution for the case where the convolved LFSR/SR cannot 

get a solution with the minimal test set length and the minimal 

hardware overhead (i.e, reduce the required number of XOR 

gates). 

For simplicity, the algorithm divides the length of the 

generator into two parts. The first part is the LFSR portion 

with size w and the second part is either a simple LFSR/SR 

with size n - w (n-w ≥ w) or shift register with size n - w (n-w 

< w). The residues of the second part of the generator can be 

changed according to the residue assignment. Refer to the 

convolved LFSR/SR in form A shown Figure 8. This division 

is practically adequate and the experimental results in  

section 6 will illustrate that situation. 

5.2 Idea of the Permutation 
In this section, the idea of the permutation of one dependency 

set, whose assigned residues are linearly dependent, is 

explained. The permutation approach of all dependency sets, 
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whose assigned residues are linearly dependent, will be 

explained in section 5.3.  

It is known from condition 1, that all residues assigned to the 

dependency set must be linearly independent. If the residues 

assigned to the dependency set are linearly dependent, one or 

more residues are linear combinations of the each other. The 

idea of the permutation will be demonstrated by an example. 

 

Fig. 11:  New generator for the PET. 

Example 6: The (24, 6, 10) CUT with its dependency sets 

according to example 5 is considered.  

This example consists of two phases. The first phase indicates 

the solution using the applicable primitive polynomial for 

permutation. The second phase indicates the solution using 

the applicable residues for permutation for a specific primitive 

polynomial.  

1. The first phase: The primitive polynomial p(x) with 

minimum terms, and |β|min is determined. This polynomial 

p(x) = 1 + x2 + x7 + x8 + x10, and |β|min equals 1 so the p(x) is 

an applicable primitive polynomial for permutation. The 

dependency set whose assigned residues are linearly 

dependent, b, is {0 1 2 6 7 10 11 12 19 23}, let π0 = {0, 1, 

2,...., 23}. First, construct set b’ = {0, 1, 2} (b’   b) and 

check if its assigned residues are linearly independent or not. 

If the residues are linearly independent, add to b’ the next 

element which is 6 in b (b’= b’ {6}). The set b’ is now {0, 

1, 2, 6} (b’  b). If its assigned residues are linearly 

independent, add to b’ the next element. This process is 

continued until the assigned residue for last added element to 

b’ causes linear dependence with other assigned residues of 

elements in b’. The residue assigned to last added element is 

the first residue that causes the linear dependence of b. In this 

example, this residue is the residue assigned to I23 in b (input 

23) which is R23. Now, it is required to permute this residue 

with another residue, assigned to input p such that p   π0 and 

p b. The first choice is the residue assigned to I22. The resi-

dues assigned to set b will be linearly independent but this 

permutation will generate linear dependence for three other 

dependency sets of the output cones. This permutation is 

ignored. The residue assigned to I21 is then considered but 

again the residues assigned to set b are linearly dependent. 

The residue assigned to I20 is then considered, followed by I18 

and so on until the residue assigned to I13 is permuted by the 

residue assigned to I23 and all residues assigned to all 

dependency sets of the output cones are linearly independent. 

The new input assignment of the permuted LFSR/ SR, π, is 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 13}. In this case, three XOR gates are required, 

and the required number of permutations is 1. The permuted 

LFSR/SR for that CUT with its initial seed and new 

permutation of the CUT inputs, π, is shown in Figure 12. 

 

Fig. 12  Permuted LFSR/SR of phase 1. 

2. The second phase: Set |β|min to 1 and limit the number of 

terms of the primitive polynomial to 3 so as to use one XOR 

gate in the LFSR stages. The number of primitive polynomials 

of degree 10 with one XOR gates is 2 [4]. Unfortunately, |β| of 

these primitive polynomials are greater than one (greater than 

|β|min). So, it is required to divide the generator into two parts, 

the first part with length 10 which is LFSR portion and the 

second part with length 14 which is a (14, 10) simple 

LFSR/SR (convolved LFSR/SR with form A). The residues of 

the second part are changed to find |β|min which equals 1. The 

solution in this case is the primitive polynomial p(x) = 

1+x7+x10, and the residues of the generator are: 0-9, 40-53. 

The residue assignment, 0-9, 40-53, is the applicable residues 

for permutation. By permuting R49 with R53, all dependency 

sets of the output cones satisfy condition 1 (this permutation is 

carried out as in the first part). R49, assigned to I19, is now 

assigned to I23 and R53, assigned to I23, is now assigned to I19. 

The number of required XOR gates for this generator is 2 and 

the required number of permutations is 1. The generator with 

its initial seed and permutation of the CUT inputs, π, is shown 

in Figure 13. The convolved LFSR/SR designed using 

algorithm NEW_CONV requires three XOR gates to test all 

output cones exhaustively in example 5. The new generator 

needs just two XOR gates.          



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 4– No.8, April 2016 – www.caeaccess.org 

 

39 

             Fig. 13  Novel generator of phase 2. 

5.3 Permutation Approach and the 

Algorithm NEW_GEN 
Each phase in the new generator design consists of other two 

phases. The first one searches for either the applicable 

primitive polynomial for permutation or the applicable 

residues for permutation. The second one is the permutation 

phase. In this section, the permutation approach for all 

dependency sets whose assigned residues are linearly 

dependent is presented.  

All dependency sets whose assigned residues are linearly 

dependent are collected in β. (The number of the dependency 

sets in β is |β|min.) The first dependency set in β is chosen, 

referred to as set b, and the first assigned residue causing 

linear dependence in b is determined. Let input s be the input 

whose assigned residue is the first residue in b causing linear 

dependence. Let set b’ (b’   b) be the set that covers the 

elements of b from the first element to element s. Now, it is 

required to permute the residue assigned to input s with the 

residue assigned to another input, p, such that p   π0 and p 

b. The residues assigned to set b’, after permuting the 

residue assigned to input p, are checked for linear 

independence. In the case that the residues assigned to set b’ 

are linearly independent and the residues assigned to set b 

after the previous permutation are linearly dependent, store p 

in buffer pp as the first permuted element in set b. The search 

to find other permuted elements in b to make the residues 

assigned to b linearly independent is repeated. 

For example, if b = {0, 2, 3, 6, 7}, and π0 = {0, 1, 2,...., 9}. Let 

the residues assigned to set b be linearly dependent, and the 

first residue in b causing linear dependence be the residue 

assigned to I6. It is required to permute the residue assigned to 

I6 (which is input s) with another residue assigned to input p 

such that p   π0 and p b. If the residue assigned to I6 is 

permuted with the residue assigned to I8 (which is input p) 

and the residues assigned to set b’, which are {0, 2, 3, 8}, are 

linearly independent and the residues assigned to set b, which 

is {0, 2, 3, 8, 7}, are still linearly dependent after permutation, 

then store p, which is I8, in buffer pp as the first permuted 

element in set b. The first residue, causing linear dependence 

in b after the first permutation, is the residue assigned to I7  

and it is required to permute it with another residue assigned 

to input p such that p   π0 and p b until the residues 

assigned to set b are linearly independent. (Generally, input p 

is considered in the discussion as the permuted element.) 

In the case that the residues assigned to b are linearly 

independent, there are three options:  

(1) The number of the dependency sets is less than |β|min. A 

new β is constructed.  

(2) If |β| ≥ |β|min and there are possibilities for other inputs to 

be permuted, then ignore the last permutation in b and try 

the next possible input.  

(3) If |β| ≥ |β|min and there is no possibility for other inputs to 

be permuted, then ignore all previous permutations 

applied to b and retrieve the stored input from buffer pp 

(first permuted element in set b) and select the possible 

input next to the stored input, let this input be p, such that 

p π0 and p b.  

I will state the steps of algorithm NEW_GEN to design the 

new generator for the PET. 

Algorithm NEW_GEN 

Input: The dependency sets of output cones, w (≥ k), |β|min, Q 

(number of generated residues), and S (number of 

required solutions). 

Output: Applicable residues for the CUT inputs, the initial 

seed, π, and the required number of permutations 

(N_PER). 

1. Phase 1 

1.1 Retrieve all primitive polynomials or the subset of all 

primitive polynomials of degree w from a stored file and 

put them in queue L, set buffer pp to -1. 

1.2 If L is not empty, then select the primitive polynomial, 

p(x), from L. If L is empty, then go to phase 2. 

1.3 Residues from R0 through Rn-1 are generated, based on 

p(x). 

1.4 Condition 1 is checked for all dependency sets of the 

output cones. 

1.5 If condition 1 is satisfied for at least (m - |β|min) 

dependency sets of the output cones, then the 

corresponding p(x) is an applicable primitive polynomial 

for permutation and set β is constructed. If p(x) is not an 

applicable p(x) for permutation, go to step 1.2. 

1.6 Take the first set in β, referred to as b, and set buffer pp 

to -1. 

1.7 Determine the first residue (assigned to input s) in b 

causing linear dependence. Let set b’ be a subset of b 

containing all elements in b from the first element up to 

input s. The residue assigned to input s is permuted with 

the residue assigned to input p such that p   π0 and p 

b.  

1.8 If the residues assigned to b’ are linearly dependent, there 

are two options: 

1.8.1 If buffer pp equals -1, try next possible input to be 

permuted. If there is no possibility for other inputs 

to be permuted, then go to step 1.2. 

1.8.2 If buffer pp does not equal -1, try next possible 

input to be permuted. If there is no possibility for 

other inputs to be permuted, then ignore all 

previous permutations applied to b and retrieve the 

stored input from buffer pp (first permuted 

element in set b) and select the possible input next 

to the stored input, let this input be p, such that p 

  π0 and p b, construct b’, set the buffer pp to -

1 and go to step 1.8. If there is no possible input 

next to the stored input as a permuted element, 

then go to step 1.2. 

1.9 If the residues assigned to b’ are linearly independent and 

the residues assigned to b are linearly dependent after 

the permutation, then store p in the buffer pp when p is 
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the first permuted element (input) in b then go to step 

1.7. 

1.10 If the residues assigned to b are linearly independent 

and the number of linearly dependent sets of the 

dependency sets is less than |β|min and do not equal zero, 

then construct the new β, update |β|min with the new β, 

and go to step 1.6. 

1.11 If the residues assigned to b are linearly independent, 

and the number of linearly dependent sets of the 

dependency sets is greater than or equal to |β|min and 

there are possibilities for other inputs to be permuted, 

then ignore the last permutation in b, try next possible 

input, construct b’, and go to step 1.8. 

1.12 If the residues assigned to b are linearly independent, 

and the number of linearly dependent sets of the 

dependency sets of the output cones is greater than or 

equal to |β|min and there is no possibility for other inputs 

to be permuted, then ignore all previous permutations 

applied to b and retrieve the stored input from buffer pp 

(first permuted element in set b) and select the possible 

input next to the stored input, let this input be p, such 

that p   π0 and p b, construct b’, set buffer pp to -1 

and go to step 1.8. If there is no possible input next to 

the stored input as a permuted element (or buffer pp 

equals -1), then go to step 1.2. 

1.13. If β is an empty set, print the applicable residues for the 

inputs, π, and store it as a solution and determine the 

initial seed of the generator. 

1.14 If the number of solutions is less than S and there are 

other primitive polynomials in L, select the next 

primitive polynomial in L and go to step 1.3. If the 

number of solutions is equal to S, exit. 

1.15 If L is empty and no applicable primitive polynomial for 

permutation exists, go to phase 2. 

2. Phase 2 

2.1 Select a primitive polynomial with minimal terms from 

L, and generate all required residues (R0 through RQ-1). 

2.2 Using the residue assignment discussed in section 4, find 

the applicable residues for permutation.  

2.3 Construct set β. . 

2.4 Repeat steps 1.6 through 1.13. (In step 1.8 and step 1.12 

of phase 1, there is possibility to branch to step 1.2 but 

this step in phase 2 will branch to 2.1 when L is not 

empty) 

2.5 If the number of solutions equals S, exit. 

2.6 If the complete set of the generated possible choices 

discussed in section 4 is finished and L is not empty, go 

to step 2.1. 

2.7 If the complete set of the generated possible choices 

discussed in section 4 is finished and L is empty, exit. 

6. EXPERIMENTAL RESULTS 
Using algorithm NEW_CONV, algorithm NEW_GEN, new 

PETPG are designed for all combinational benchmark circuits 

(labelled as ckt in the first column of Table 8 and Table 9) in 

[1], after they had been segmented using the new algorithm 

presented in [30]. Table 8 presents the comparison between 

the design of the convolved LFSR/SR based on the algorithm 

NEW_CONV in this paper and the algorithm in [27-28] for the 

segmented benchmark circuits with a cone size reduction, l, of 

16, 20, 24, and 28 inputs. In addition, Table 9 presents the 

design of the new generators for the segmented benchmark 

circuits with a cone size reduction, l, of 16, 20, 24, and 28 

inputs. (After segmenting the circuit with the segmentation 

cells, the resulting k for the segmented circuits may be less 

than l. The difference between l and k, obtained after seg-

menting, is due to the nature of the circuit [16, 30].) The first 

two columns of Table 8 and Table 9 provide the 

characteristics of the segmented circuits. The exponent terms 

for the primitive polynomial, p(x), is given in the third column 

of Table 8 and Table 9. The applicable residues for the stages 

of the PETPG, the total number of required XOR gates to 

realize the PETPG, and the run-time in seconds on a SUN 

Sparc II workstation are shown in the fourth and fifth column 

of Table 8 and Table 9, respectively. The required number of 

permutations (N_PER) is given in the sixth column Table 9. 

For example in Table 9, for the segmented c432 circuit in the 

first row, the primitive polynomial, p(x), is 1 + x3 + x4 + x5 + 

x16. Stages 0 through 62 have residues R0 through R62, respec-

tively. The total number of XOR gates required to realize the 

new PETPG is 3 in less than one second with number of 

permutations four. Referring to Table 8, the corresponding 

design of the convolved LFSR/SR requires 6 XOR gates in 2 

seconds for the algorithm NEW_CONV and 14 XOR gates in 

less than one second for the algorithm in [27-28]. 

The number of permutations in the last column of Table 9, 

referred to N_PER, is calculated as follows. Let π0 be {0, 1, 2, 

3, 4, 5, 6, 7, 8, 9}, and π be {1, 0, 2, 3, 4, 9, 6, 7, 8, 5}. Then, 

α is {1, 1, 0, 0, 0, 1, 0, 0, 0, 1}. The elements in the set α are 

either 0 or 1. If element i of π0 equals element i of π, then 

element i of α = 0, if the elements are not equal then element i 

of α = 1. The number of the permutations in π equals the 

number of 1’s in α divided by 2 which equals 2 in this case. 

From Table 8 and Table 9, note the following: 

1. The test set lengths designed for all combinational 

benchmark circuits are optimal (minimal) test set lengths (the 

degree of p(x), w, equals k) without requiring the insertion of 

segmentation cells. From the results in [26], additional 

segmentation cells are required to find an applicable primitive 

polynomial. 

2. The  hardware  overhead  (XOR  gates)  for  NEW_CONV  

is  always  less  than  that required  by  algorithm in [27-28] 

for  the same primitive polynomial and Q. In every case, 

NEW_CONV produces several possible solutions which 

increase the chance of obtaining a result with minimal 

hardware overhead. 

3. The algorithm NEW_CONV obtains a solution in cases 

where, for the same p(x) and Q, the algorithm in [27-28] 

cannot obtain any solution of the optimal test set length. Two 

cases (in c499, and c1355) do not provide any solution after 

two days run-time whereas algorithm NEW_CONV does in 

reasonable time for the optimal test set length. 

4. The same applicable residues with the same hardware 

overhead was obtained by the algorithm NEW_CONV and the 

algorithm in [27-28] for  c1908  and  using p(x) = 1 + x7 + x20,  

and  Q  =  500. But the run-time using NEW_CONV was 613 

seconds while the algorithm in [27-28] requires 5832 seconds. 

The hardware overhead of the algorithm NEW_CONV and the 

algorithm in [27-28] for c1908 is the same, but the run-time 
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using NEW_CONV is faster than the run-time using the 

algorithm in [27-28]. 

5. Comparing the number of XOR gates and the required 

run-time between the convolved LFSR/SR using 

NEW_CONV in Table 8 and the new generator in Table 9 

indicates the efficiency of the new generator where the 

required hardware overhead and the run-time are always the 

least. In every case, there are several possible solutions 

which increase the chance of obtaining a result with minimal 

hardware overhead. 

6. The number of required permutations of the CUT inputs is 

small compared to the length of the generator, n.  

7. The new generator has found solutions in cases where the 

convolved LFSR/SRs based on the algorithm in [27-28] could 

not find a solution in reasonable time. In c5315 and c7552, the 

algorithm in [27-28] does not provide any solution when k = 

16 for any primitive polynomial of degree 16 (the algorithm in 

[27-28] found a solution when w = 17) but the new generator 

succeeds with low hardware overhead. All results in Table 9 

prove the efficiency of the new generator where a solution in 

all cases is achieved. Table 9 demonstrates the potential of the 

new generator approach, generating optimal (minimal) test set 

lengths with low hardware overhead for the segmented 

combinational benchmark circuits.  

7. CONCLUSION 
An efficient new algorithm to design convolved LFSR/SRs so 

as to generate the applicable residues to exhaustively test all 

output cones with low hardware overhead has been introduced 

and demonstrated. With no restriction in the size of the SR 

segment and with restriction in the number of FF stages, a 

significant reduction in the number of XOR gates is achieved. 

The success of the approach is indicated in the experimental 

results where the generation process of possible choices 

enables us to produce several possible solutions from which a 

minimal hardware solution is chosen.  

In addition, a new PETPG, that bridges the gap between the 

convolved LFSR/SR and the permuted LFSR/SR, has been 

introduced and demonstrated. An efficient heuristic search 

approach has been presented. It permutes the CUT inputs 

after the applicable residues for permutation become 

available. The changing residues assigned to the CUT inputs 

followed by permutation gives the new generator a special 

character in that the convolved LFSR/SR and the permuted 

LFSR/SR are special cases of the new generator. The 

approach is successful because: (1) The test set lengths 

designed for all combinational benchmark circuits are 

optimal (minimal) test set lengths without requiring 

additional segmentation cells. (2) The required hardware 

overhead and the run-time are always less than that produced 

by the convolved LFSR/SR using NEW_CONV and the 

algorithm in [27-28]. (3) The number of required 

permutations of the CUT inputs is small compared to the 

length of the generator, n. (4) The new generator has found 

solutions for those cases where the convolved LFSR/SRs 

using the algorithm in [27-28] could not find a solution.  

Finally, the practical results indicate that a generator with 

minimal test set length, minimal  hardware  overhead,  

minimum  routing  overhead,  and  good  performance  can  

be obtained. 

 

Table 8. Results of the new convolved LFSR/SR for segmented benchmark circuits 

XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt 

14 / < 1 sec. 

14 / < 1 sec. 

12 / < 1 sec. 

10 / < 1 sec. 

17 / < 1 sec. 

7 / < 1 sec. 

11 / 1 sec. 

12 / < 1 sec. 

12 / < 1 sec. 

10 / 1 sec. 

0-40 48-67 69-70 

0-40 44-61 63-66 

0-36 40-55 61-70 

0-41 50-68 70-71 

0-20 23-55 58 

0-37 243-258 

0-36 110-127 

0-46 59-66 

0-33 135-151 

0-29 380-396 

6* / 2 sec. 

6* / 4 sec. 

6* / 4 sec. 

6* / 3 sec. 

9* / 4 sec. 

2* / 4 sec. 

6* / < 1 sec. 

6* / < 1 sec. 

6* / 1 sec. 

4* / < 1 sec. 

0-27 64-98 

0-34 64-91 

0-33 88-116 

0-29 52-84 

0-19 21-31 116-139 

0-33 216-236 

0-19 64-98 

0-19 27-61 

0-25 214-238 

0-27 177-195 

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

16 15 13 4 0 

20 19 4 3 0 

20 3 0 

20 9 5 1 0 

20 17 9 7 0 

24 4 3 1 0 

28 3 0 

(63, 19, 16) 

 

 

 

(55, 26, 20) 

 

 

 

(51, 22, 24) 

(47, 18, 28) 

c432 

13 / 2 sec 

12 / 25 sec 

12 / 1 sec 

9* / 24 sec 

- 

- 

0-23 55-69 81-90 

0-21 69-83 139-150 

0-22 26-41 87-96 

0-16 23-39 72-86 

no results after two days run 

no results after two days run 

9* / 16 sec 

9* / 21 sec 

9* / 12 sec 

9* / 10 sec  

17* / 646 sec. 

6*/ 1359 sec. 

0-13 22-40 46-61 

0-13 18-36 169-184 

0-13 15-32 91-107 

0-13 18-32 57-76 

0-21 185-192 264-281 

0-21 82230-82255 

14 9 8 3 0 

14 13 11 4 0 

14 11 7 1 0 

14 13 3 2 0 

22 11 2 1 0 

22 15 12 9 0 

(49, 40, 14) 

 

 

 

(48, 39, 22) 

c499 

c1355 



 

Communications on Applied Electronics (CAE) – ISSN : 2394-4714 

Foundation of Computer Science FCS, New York, USA 

Volume 4– No.8, April 2016 – www.caeaccess.org 

 

42 

XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt 

17 / 1827 sec. 

16 / 2 sec. 

11 / 1 sec. 

10 / 956 sec. 

11 / < 1 sec. 

10 / 3 sec. 

9 / 1 sec. 

10 / 1 sec. 

17 / 1 sec. 

14 / 28 sec. 

0-15 17-39 47-64 124-137 

0-32 51-76 393-404 

0-46 70-92 95 

0-38 50-69 209-220 

0-34 51-76 100-108 

0-23 117-151 397-407 

0-26 90-123 186-194 

0-25 89-122 197-206 

0-23 29-68 130-134 

0-27 308-338 410-418 

9* / 287 sec. 

9* / 219 sec. 

6* / 14 sec. 

9* / 95 sec. 

9* / 254 sec. 

3* / 569 sec. 

3* / 395 sec. 

3* / 442 sec. 

9* / 36 sec. 

2* / < 1 sec. 

0-15 49-82 135-155 

0-15 46-76 428-451 

0-45 216-240 

0-15 23-54 179-201 

0-16 37-70 268-286 

0-16 110-143 214-232 

0-16 86-121 214-230 

0-16 91-120 180-202 

0-23 29-48 59-83 

0-27 343-382 

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

16 15 13 4 0 

17 16 3 2 0 

17 3 0 

17 5 0 

17 6 0 

24 4 3 1 0 

28 3 0 

(71, 28, 16) 

 

 

 

(70, 28, 17) 

 

 

 

(69, 28, 24) 

(68, 24, 28) 

c880 

11 / 1326 sec. 

9* / 831 sec. 

9* / 1839 sec. 

15* / 5832 sec. 

20 / 16072 sec. 

16 / 4583 sec. 

19 / 37994 sec. 

15 / 21436 sec. 

9 / 3 sec. 

0-18 326-341 364-378 

0-17 149-164 219-234  

0-15 96-111 202-219  

0-19 316-330 449-457 

0-19 263-273 291-301 315-316 

0-19 29-39 312-321 441-443  

0-19 100-110 472-482 492-493  

0-21 168-177 280-289  

0-27 337-347 362  

9* / 594 sec. 

9* / 214 sec. 

9* / 123 sec. 

15* / 613 sec. 

17* / 906 sec. 

15* / 100 sec. 

14* / 439 sec. 

14* / 520 sec. 

7* / 3 sec. 

0-15 220-235 446-463 

0-15 170-187 231-246  

0-15 96-111 202-219  

0-19 316-330 449-457 

0-19 345-355 437-449  

0-19 48-57 224-237  

0-19 167-177 364-376  

0-20 183-192 466-476  

0-27 58 332-342  

16 5 4 3 0 

16 11 3 2 0 

16 11 6 5 0 

20 17 0 

20 6 5 3 0 

20 9 5 1 0 

20 10 5 1 0 

21 5 2 1 0 

28 3 0 

(50, 27, 16) 

 

 

(44, 27, 20) 

 

 

 

(42, 28, 21) 

(40, 11, 28) 

c1908 

17 / 1 sec. 

13 / 2 sec. 

14 / 8 sec. 

16 / 1 sec. 

16 / 2 sec. 

13 / 2 sec. 

10 / 1 sec. 

13 / < 1 sec. 

21 / 2 sec. 

16 / 12 sec. 

0-220 223-243 257-274 279-283  

0-237 272-289 306-314  

0-238 340-357 359-366  

0-209 211-260 264-265  

0-242 266-284  

0-238 261-282 285 

0-242 249-267 

0-246 253-267 

0-223 240-266 270-274 

0-204 214-242 329-348  

9* / 177 sec. 

6* / 56 sec. 

9* / 151 sec. 

6* / 46 sec. 

6* / 171 sec. 

6* / 57 sec. 

6* / 164 sec. 

6* / 167 sec. 

6* / 240 sec. 

9* / 830 sec. 

0-15 18-217 390-438  

0-215 344-392  

0-15 17-210 311-365  

0-80  88-268  

0-203 207-264  

0-87 115-288 

0-205 207-262 

0-206 232-286 

0-213 404-445 

0-26 29-210 240-284  

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

20 9 5 1 0 

20 15 5 4 0 

20 15 7 4 0 

20 15 8 7 0 

20 15 9 2 0 

24 4 3 1 0 

27 8 7 1 0 

(265, 42, 16) 

 

 

(262, 40, 20) 

 

 

 

 

(256, 33, 24) 

(254, 31, 27) 

c2670 

19 / 811 sec. 

19 / 5 sec. 

18 / 8 sec. 

18 / 1 sec. 

12 / 100 sec. 

0-24 26-41 43-66 76-112 310-332 412-414  

0-23 28-77 81-103 106-132 192-195  

0-22 48-71 86-117 191-212  221-226  

0-24 82-106 109-133 138-156  

0-27 739-766 1319-1344  

9* / 944 sec. 

9* / 812 sec. 

6* / 9 sec. 

9* / 76 sec. 

8* / 19396 sec. 

0-15 126-217 463-482  

0-15 152-176 243-329  

0-19 3908-3994  

0-23 83-106 135-180  

0-27 577-601 2556-2584 

16 11 9 7 0 

16 12 6 1 0 

20 19 4 3 0 

24 4 3 1 0 

28 3 0 

 (128, 61, 16) 

 

(107, 50, 20) 

(94, 40, 24) 

(82, 31, 28) 

c3540 

22 / 63 sec. 

 

19 / 2376 sec. 

18 / 17 sec. 

0-146 148-169 212-235 281-300 

357-358  

0-171 199-218 248-268 370 371  

0-147 150-176 234-256 279-295 

9* / 9399 sec. 

 

9* / 7238 sec. 

6* / 10612 sec. 

0-19 156-282 424-491  

 

0-19 103-268 300-328  

0-146 12488-12555  

20 6 5 3 0 

 

20 9 5 1 0 

20 19 4 3 0 

(215, 76, 20) 

 

 

 

c5315 
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XOR /time Applicable Residues XOR / time Applicable Residues p(x) (n,m’,k) Ckt 

19 / 245 sec. 

15 / 823 sec. 

0-160 163-189 324-339  

0-142 175-207 401-418 

9* / 433 sec. 

6* / 108 sec. 

0-23 26-141 182-245  

0-142 448-498  

24 8 5 2 0 

28 6 4 1 0 

(204, 79, 24) 

(194, 68, 28) 

18 / 61 sec. 

 

16 / 7 sec. 

19 / 20 sec. 

 

9 / 2 sec. 

0-22 416-433 447-466 531-549 560-

578 580-598  

0-19 233-253 296-330 342-352  

0-23 96-118 752-769  

 

0-27 428-446  

9* / 270 sec. 

 

9* / 1111 sec. 

10* / 198 sec. 

 

6 / 2 sec. 

0-15 210-241 437-506  

 

0-19 669-705 917-946  

0-23 96-112 1619-1642  

0-27 1078-1096  

16 10 9 6 0 

 

20 6 5 3 0 

24 4 3 1 0 

 

28 3 0 

(118, 36,16) 

 

(87, 25, 20) 

(65, 25, 24) 

 

(47, 8, 28) 

c6288 

21 / 4 sec. 

 

21 / 9 sec. 

 

21 / 4 sec. 

15 / 5 sec. 

0-172 180-209 213-260 295-315 

318-319  

0-167 169-189 224-281 322-341 

377-383  

0-177 184-214 221-260 264-275  

0-202 211-240 259-280 

6* / 2383 sec. 

 

6* / 61 sec. 

 

6* / 1 sec. 

6* / < 1 sec. 

0-79 12609-12802  

 

0-79 987-1180  

 

0-23 163-399 

0-27 127-353 

20 19 4 3 0 

 

20 6 4 1 0 

 

24 7 2 1 0 

28 9 5 1 0 

(274, 45, 20) 

 

 

 

(261, 34, 24) 

(255, 38, 28) 

c7552 

Table 9: Results of the new generator for segmented benchmark circuits 

N_PER XOR / time Applicable Residues p(x) (n,m’,k) Ckt 

4 

4 

2 

4 

4 

6 

2 

1 

2 

6.5 

3 / < 1 sec. 

3 / < 1 sec. 

3 / < 1 sec. 

3 / < 1 sec. 

6 / < 1 sec. 

2 / 1 sec. 

6 / < 1 sec. 

3 / < 1 sec. 

6 / 1 sec. 

2 / 12 sec. 

0-62 

0-62 

0-62 

0-62 

0-19  27-61 

0 - 19  151 - 185 

0 - 19  21 - 55 

0-54 

0 - 23  208 - 234 

0 - 27  53 - 71 

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

16 15 13 4 0 

20 19 4 3 0 

20 3 0 

20 9 5 1 0 

20 17 9 7 0 

24 4 3 1 0 

28 3 0 

(63, 19, 16) 

 

 

 

(55, 26, 20) 

 

 

 

(51, 22, 24) 

(47, 18, 28) 

c432 

2 

2 

2 

3 

3.5 

1 

6 / 1 sec. 

6 / 3 sec. 

6 / 2 sec. 

6 / 1 sec. 

3 / 1 sec. 

6 / 9193 sec. 

0 - 13  43 - 77 

0 - 13  156 - 190 

0 - 13  24 - 58 

0 - 13  20 - 54 

0 - 48 

0 - 21  12689 - 12714 

14 9 8 3 0 

14 13 11 4 0 

14 11 7 1 0 

14 13 3 2 0 

22 11 2 1 0 

22 15 12 9 0 

(49, 40, 14) 

 

 

 

(48, 39, 22) 

c499 

c1355 

4 

5 

3 

5.5 

5.5 

6 

7 

7.5 

5.5 

3 

6 / 3 sec. 

6 / < 1 sec. 

6 / < 1 sec. 

3 / < 1 sec. 

6 / < 1 sec. 

2 / 9 sec. 

2 / 7 sec. 

2 / 4 sec. 

6 / < 1 sec. 

2 / 9 sec. 

0 - 15  62 - 116 

0 - 15  46 - 100 

0 - 15  27 - 81 

0 - 70 

0 - 16  42 - 94 

0 - 16  97 - 149 

0 - 16  54 - 106 

0 - 16  71 - 123 

0 - 23  25 - 69 

0 - 27  146 - 185 

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

16 15 13 4 0 

17 16 3 2 0 

17 3 0 

17 5 0 

17 6 0 

24 4 3 1 0 

28 3 0 

(71, 28, 16) 

 

 

 

(70, 28, 17) 

 

 

 

(69, 28, 24) 

(68, 24, 28) 

c880 

4 

6.5 

5.5 

2.5 

6 

6 / 108 sec. 

6 / 295 sec. 

6 / 2635 sec. 

2 / 1923 sec. 

6 / 400 sec. 

0 - 15  508 - 541 

0 - 15  570 - 603 

0 - 15  6637 - 6670 

0 - 19  2507 - 2530 

0 - 19  714 - 737 

16 5 4 3 0 

16 11 3 2 0 

16 11 6 5 0 

20 17 0 

20 6 5 3 0 

(50, 27, 16) 

 

 

(44, 27, 20) 

 

c1908 
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N_PER XOR / time Applicable Residues p(x) (n,m’,k) Ckt 

3 

3.5 

1 

9.5 

6 / 1159 sec 

6 / 65 sec. 

6 / 121 sec. 

3 / 34 sec. 

0 - 19  1668 - 1691 

0 - 19  107 - 130 

0 - 20  566 - 586 

0 - 27  471 - 482 

20 9 5 1 0 

20 10 5 1 0 

21 5 2 1 0 

28 3 0 

 

 

(42, 28, 21) 

(40, 11, 28) 

3 

9 

5 

2 

1 

4 

3 

3 

4.5 

7 

3 / < 1 sec. 

3 / < 1 sec. 

6 / 341 sec. 

3 / < 1 sec. 

3 / < 1 sec. 

3 / < 1 sec. 

3 / 1 sec. 

3 / 1 sec. 

3 / < 1 sec. 

6 / 1159 sec. 

0-264 

0-264 

0 - 15  17 - 265 

0 - 261 

0 - 261 

0 - 261 

0 - 261 

0 - 261 

0 - 255 

0 - 26  29 - 255 

16 5 4 3 0 

16 6 4 1 0 

16 15 12 10 0 

20 9 5 1 0 

20 15 5 4 0 

20 15 7 4 0 

20 15 8 7 0 

20 15 9 2 0 

24 4 3 1 0 

27 8 7 1 0 

(265, 42, 16) 

 

 

(262, 40, 20) 

 

 

 

 

(256, 33, 24) 

(254, 31, 27) 

c2670 

6 

6.5 

9.5 

11 

14.5 

3 / 2 sec. 

3 / 1 sec. 

3 / 20 sec. 

6 / 56 sec. 

2 / 1273 sec 

0-127 

0-127 

0-106 

0-23 30-99 

0-27 310-363 

16 11 9 7 0 

16 12 6 1 0 

20 19 4 3 0 

24 4 3 1 0 

28 3 0 

 (128, 61, 16) 

 

(107, 50, 20) 

(94, 40, 24) 

(82, 31, 28) 

c3540 

13.5 

11 

7.5 

5.5 

14 

6 / 12087 sec. 

6 / 1634 sec. 

6 / 576 sec. 

6 / 177 sec. 

3 / 37 sec. 

0 - 15  47 - 258 

0 - 19  27 - 221 

0 - 19  22 - 216 

0 - 23  25 - 204 

0 - 193 

20 6 5 3 0 

20 9 5 1 0 

20 19 4 3 0 

24 8 5 2 0 

28 6 4 1 0 

(215, 76, 20) 

 

 

(204, 79, 24) 

(194, 68, 28) 

c5315 

11.5 

7.5 

4.5 

3 

3 / 3 sec. 

6 / 44 sec. 

6 / 5 sec. 

4 / 3 sec. 

0 - 117 

0 - 19 57 - 123 

0 - 23  94 - 134 

0 - 27  526 - 544 

16 10 9 6 0 

20 6 5 3 0 

24 4 3 1 0 

28 3 0 

(118, 36,16) 

(87, 25, 20) 

(65, 25, 24) 

(47, 8, 28) 

c6288 

21.5 

6 

4 

4 

3 / 8 sec. 

3 / 4 sec. 

3 / 8 sec. 

3 / 7 sec. 

0 - 304 

0 - 273 

0 - 260 

0 - 254 

20 19 4 3 0 

20 6 4 1 0 

24 7 2 1 0 

28 9 5 1 0 

(274, 45, 20) 

 

(261, 34, 24) 

(255, 38, 28) 

c7552 
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