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ABSTRACT  

The paper presents a novel allocation algorithm to allocate 

independent real time tasks on a processor in a way that 

improves the processor’s throughput (Processor’s throughput 

is the number of tasks the processor can accept for execution). 

The proposed approach allocates tasks’ workloads (task’s 

workload is the percentage of work required by the processor 

to execute the task) instead of their processing powers 

(Processing power assigned to a task is a percentage of the 

processor reserved to execute the task such that its deadline is 

satisfied).  To achieve our objective a variable processing 

power is assigned to the task under consideration over its 

deadline to satisfy its timing requirements instead of rejecting 

it if a constant processing power cannot be guaranteed as in 

previous CPU reservation approaches.  Simulation results 

revealed that the acceptance rate of the admitted tasks to a 

certain processor using the new approach is superior to that 

achieved using the traditional processing power reservation 

approach.   

Keywords 
Workload allocation, Processing power, Processor utilization, 

Scheduling real-time tasks. 

1. INTRODUCTION 
Deploying applications on multiprocessor and distributed 

platforms require the mapping and allocation of the 

application’s tasks to the different computing resources of the 

platform such that pre-set objectives should be met. This 

problem is known as scheduling problem. Various studies 

have proven that finding an optimal schedule is an NP-

complete problem [17]. However, a large number of 

scheduling algorithms which attempt to find a suboptimal 

solution have been proposed. These algorithms can be 

categorized mainly into two groups based on the type of 

scheduled applications. The first category deals with non real 

time applications and the second deals with real time 

applications. The main concern in scheduling non real time 

applications is to minimize the time required to execute all the 

application’s tasks (makespan). While, the main concern in 

scheduling real time applications is satisfying the timing 

constraints of each task. Hence, scheduling real-time 

applications is more challenging. Scheduling real time 

applications on multiprocessor and distributed platforms is 

achieved using a two-level hierarchical scheduler: 1) A high 

level scheduler (partitioning algorithm) which is concerned 

with how to partition the applications and assign their tasks to 

the different processors. 2) Low level scheduler (CPU 

reservation algorithm) that determines the execution order of 

real-time independent tasks on each processor individually. 

The overall performance of the scheduler depends on the 

performance of its two components. 

This paper proposes a new approach for processor reservation 

that improves the utilization of the processor and increases its 

throughput. In the previous approach for processing power 

reservation [8],[9],[13], when a task is submitted, the 

scheduler accepts the  task if the available processing power 

(PP) during the task's deadline is  sufficient to satisfy its 

deadline requirements (i.e, the min. available PP is at least 

equals the required PP for the task to satisfy its deadline). 

Otherwise the task and hence the whole application are 

rejected.  Our new approach depends on allocating the 

workload of the task on the processor by assigning the task a 

variable processing power that guarantees its timing 

requirements instead of attempting reserve a constant 

processing power over the time spent by the task in the 

processor and rejecting the task if this PP cannot be provided 

by the processor. Thereby, we increases the chance of 

accepting more tasks on the processor and achieve better 

processor throughput and utilization than previous approaches 

[8],[9],[13].  

The rest of this paper is organized as follows. Section 2 

reviews some work related to real time task scheduling. 

Section 3 discusses the previous approach for processing 

power reservation. Section 4 discusses the proposed workload 

allocation algorithm. Section 5 gives a numerical example 

that illustrates our approach. In section 6, we provide a 

theoretical analysis and prove the correctness of our approach. 

Sections 7&8 describe the simulation experiments setup and 

discuss the results. Section 9 concludes the paper.  

2. RELATED WORK 
A great deal of research has been conducted to find solutions 

for the problem of scheduling real time tasks over various 

computing platforms ranges from uni-processor to 

geographically dispersed computing resources connected via 

the internet. Scheduling algorithms in [17],[3] address the 

problem of task allocation over  Grid; The algorithms in   

[2],[13],[20],[22],[23],[24]  address the problem of task 

allocation over a cluster; The algorithms in  

[10],[11],[16],[6],[[18],[20] address the problem of allocating 

tasks over the processors of  multiprocessor and multicore 

systems; while the algorithms in [5],[14], [15],[8], [9],[4] 

have been proposed to ensure an efficient and predictable 

scheduling of real-time  independent tasks over a uni-

processor.   

Algorithms for scheduling in real time systems can be 

classified based on various criteria. They can be classified 
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based on the computing platforms as mentioned above, or 

based on the characteristics of the real time applications.  

Another classification to scheduling approaches could be 

based on additional performance metrics along with satisfying 

timing requirements such as minimizing number of processors 

as in [12], reducing power consumption in processors with 

dynamic voltage scaling as  in [1], [18], [17], [23]  or  

achieving effective  fault-tolerant in real time systems as in 

[22], [24].  

3. TRADITIONAL CPU RESERVATION 

ALGORITHM 
The traditional approach for CPU reservation [13] is based on 

the operating system Rialto [8] that was developed by 

Microsoft research. Rialto can schedule real time and non-real 

time independent tasks on a uni-processor. In this approach, 

the processing power reservations are made for the tasks to 

ensure minimum execution rate that satisfies time constraints.  

Each submitted real time task Ti is characterized in terms of 

three parameters {Si , Fi , PPi }  where , Si : is the task start 

time, Fi: is the task finish time , PPi is the required processing 

power for this task. The request for reservation is of the form 

reserve x % processing power out of y % available 

processing power for a certain time (task deadline). Where, 

the available processing power of a processor ranges from 0 

to 100%. According to this approach a task Ti is accepted if 

the processor can provide available processing power not less 

than the task’s required processing power over its deadline 

interval.  

 

The processor maintains a data structure called a reservation 

table, such that all processing power reservations can be 

honored continuously. Each entry in the table has information 

about a scheduled task such as {Si , Fi , PPi }.   Table 1 shows 

a snap shot of the reservation table of a processor between 

time t  = 115 and t  = 211. Fig.1 shows the execution profile 

of these tasks, which we will call Reservation Graph (RG).  

This graph shows the reserved processing power as a function 

of time. 

Reserved processing power at time t  (i.e. ( ))PP tres is the 

summation of all the required processing powers by the tasks 

Tj allocated on the processor at t , i.e. 

 

( ) ( ).....(1)PP t PP tres j
j
 The available processing power 

on the processor at any time )(tPPava  is given by: 

( ) 1 ( ).....(2)PP t PP tava res   

 (4.2) 

The acceptance condition for any task T j  is:  

 

( ) .....(3)PP t PPava j  [ , ]t S Fj j   

i.e. 

 min ( ) .....(4)min_ _

Fj
PP PP t PPava java j t S j

 


 

 

 

 
 

 

   

 

Ti Si Fi PPi 

T1 115 135 0.2 

T2 124 156 0.1 

T3 143 172 0.3 

T4 167 211 0.4 

 

                       
     

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm1 specifies the steps to schedule tasks on a 

processor using Rialto approach. 

 

Algorithm 1: traditional approach  

Input: a set of real-time tasks T },...,2,1{ nTTT  

Output: RG, acceptance rate 

Begin  

1. acceptance_counter = 0 

2. For each jT    T  

Compute: 

 min ( )min_ _

Fj
PP PP tavaava j t S j




 

  If ( )min_ _PP PPj ava j  then   

         Increment acceptance_counter; 

         Update ( )PP tres in the window [ , ]S Fj j  

as follows: ( ) ( )PP t PP t PPres res j   

       3. acceptance rate = acceptanc_counter/n 

End 

 

The main disadvantage of this approach is that a task jT  is 

rejected if its constant required processing power cannot be 

guaranteed for its deadline. This increases rejection rate of the 

tasks. Consider for example the tasks in Table 1 and Figure1, 

assume that a task T5 is submitted with the following 

parameters: {S5=170, F5=180, PP5= 0.4}. Applying the 

traditional algorithm we find that: min_ _5PP ava  = 0.3. 

Since PP5 > PPmin_ava-5,T5 is rejected as shown in Fig. 2 below. 

Table 1.  Reservation table for tasks T1, T2, T3, and T4. 

Fig. 1: Reservation graph RG of the processor 
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Fig. 2: T5 is rejected using the traditional approach 

 
 

Our proposed algorithm modifies this algorithm by allocating 

the task using its workload instead of its processing power to 

boost the acceptance rate.  

 

4. THE PROPOSED WORKLOAD 

ALLOCATION APPROACH 
 

In this approach, a variable processing power is assigned to 

the allocated task jT  to satisfy its deadline instead of 

rejecting it if its constant required processing power cannot be 

guaranteed over its deadline. A task T j  is accepted if its 

required workload is not greater than the available workload 

_WLava j  in the window [ ,S Fj j ].  

The workload WLj of a task Tj can be computed using 

equation 5: 

.....(5)WL PP dj j j 
 

Where dj = Fj-Sj is the task deadline.
 

 

To calculate the available workload, the task window [

,S Fj j ] is segmented into m j segments. Each segment 

,g jk  with time length equal to ,lk j  and is characterized by 

a constant available processing power ( _ ,PPava k j ).  

Algorithm 2 describes this procedure in detail. 

 

 

 

 

Algorithm 2: workload distribution (WL) approach  

Input: a set of real-time tasks T { , , ..., }1 2T T Tn  

Output:   RG, Acceptance rate 

Begin  

1. acceptance_counter = 0 

2. For each jT  T 

              Compute  jdjPPjW L   

( * )__ , ,1

mj
WL PP lavaava j k j k jk




 

  If ( )_WL WLava j j  then   

        Increment acceptance_counter  

       Call Algorithm 3 to update RG   

   with workload of  T j  

       3. acceptance rate = acceptanc_counter/n 

End  

 

If a task T j  is accepted; jW L  is distributed over T j ’s 

window by assigning T j   a new variable processing power (

jPP (t); jFtjS  ) enough to satisfy jW L . To distribute

jW L , the available processing power of each segment in the 

window [ jFjS , ] is calculated using the Reservation Graph (

RG ). If  _ ,PPava k j  is greater than or equal to jPP , then a 

processing power equal to jPP  is reserved for T j  over this 

segment,  otherwise, a processing power equal to _ ,PPava k j  

is reserved for T j  and accumulate the remaining workload,

)_ _ , ,WL (PP  - PP  * lrem j j ava k j k j  . The accumulated 

remaining workload is then distributed over the segments that 

have available processing power. This procedure is described 

in detail in algorithm 3.  

 

Algorithm 3: update RG (allocate accepted task on RG) 

Input: a real-time task, T j   

Output: updated RG  

Begin  

1. Initialize 0_WLrem j   

2. For ( 1, , )k k m kj     

  If ( , _PP PPjk j ava  ) then  

             _ _, ,PP PP PPres res jk j k j   

  Else  

  1 _ , _ , _ ,PP   PP PPres k j res k j ava k j     

    

jk* ljkava - PPj (PP jrem W L jremWL ,),___ 

  

3. 1k   

4. While ( 0_WLrem j  )  

   If ( 1)_ ,PPres k j   

               Compute the unused load:  
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       _ , _ , ,WL   PP  * lunused k j ava k j k j   

        If ( __ ,WL WLrem junused k j 
) then  

             1 _ ,PP  res k j 
 

                     _ _ _ ,WL   WL  - WL  j rem j rem uused k j   

       1k k     

 

          Else 

       
_

_ , _ ,
,

WLrem j
PP  PP   res k j res k j

lk j

    

                     0_WL    rem j   

 

           Else 

               1k k     

End 

 

 

                                    

5. A NUMERICAL EXAMPLE 
 

Consider the reservation table1 again, as we have seen task 

5T  has been rejected using the traditional approach, but when 

applying our approach:  

         The required workload:  

     5WL = 0.4 * (180-170) = 4  

      The available workload  

180

_5
170

WLava
t

  

      = (172-170) * 0.3 + (180-172) * 0.6 = 5.4 

      Since _5WLava > 5WL  then 5T   is accepted 

      The new ( )5PP t  in the window ]5,5[ FS  

       is calculated as follows: 

       The window ]5,5[ FS is partitioned into two segments: 

         1,5g  (170< t <172) & 2,5g  (172< t <200) 

         1. Segment 1,5g  (170< t <172) 

             Since _1,5PPava = 0.3 < 5PP  , then  

                       _1,5PPres = 1  

_5WLrem = (0.4 - 0.3) * (172-170) = 0.2 

          2. Segment 2,5g  (172< t <200) 

              Since 2,5_PP av = 0.6 > 5PP  , then  

        _2,5PPres = 5_2,5PP PPres   = 0.8  

Now, the remaining workload 5_remWL  will be distributed 

over the period (172<t<180). The new processing power will 

be: 

)172180(

2.0

5,2_5,2_


 resPPresPP       

   = 0.8+0.025=0.825 

Figures (3a-d) illustrate the steps of our algorithm and figure 

4 shows the RG after accepting and allocating T5 on the 

processor. 

 

 

 

 
Fig. 3a: Step 1, computing required workload for T5 

 
Fig. 3b: Step 2, computing available workload  
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Fig. 3c: Step 3, computing remaining workload 

 

 

 

 

 
Fig. 3d: Step 4, distributing remaining workload 

 

 

 
 

 

 

 

 

6.  THEORETICAL ANALYSIS OF OUR 

APPROACH 
 
In this section we prove that our approach (WL approach) 

outperforms the traditional approach or in the worst case 

equals it by providing the following two theories: 

 

Theorem 1: If a task is accepted on a processor using the 

traditional approach, then it will be accepted using the WL 

approach. 

Proof: Suppose that T j  is a task of parameters (

, , )S F PPj j j . If T j  is accepted using Algorithm 1 then 

according to inequality 4, for all segments 
,gk j

in [ , ]S Fj j , 

we have _ ,PP PPjava k j   as shown in Fig. 5. From this 

graph we can write formulas for _WLava j and WL j as 

follows: 

( * )_ , ,1

mj
WL PP lava j ava_k j k jk




…… (6) 

( * ),1

mj
WL PP lj j k jk




….. (7) 

Since _ ,PP PPjava k j   ,gk j within [ , ]S Fj j , from 

equations (6 and 7), we conclude that: _WL WLava j j  

which means that the task is also accepted using Algorithm 2. 

 

 
 

 

 

 

Theorem 4.2: If T j  is rejected using the traditional approach, 

it can be accepted by WL, it may be accepted by WL 

approach. 

Proof: If task T j  is rejected by Algorithm 4.1 this means that 

the condition _ ,PP PPj ava k j is not satisfied for at least 

.80

7 

 

200 

.2 

.6 

.4 

1 

115 124 135 143 156 167 172 211 

Processing power 

Fig. 4:  RG after accepting T5  

Fig. 5: A task accepted using traditional approach  

is also accepted using WL approach 
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one segment 
,gk j

 within [ , ]S Fj j  as shown in Fig. 6. From 

this graph we can write WL j and _WLava j as follows: 

__WL WL WLj rem jadd j  …… (8) 

_ _ _WL WL WLava j jadd j unused  …… (9) 

 

 

 
Fig 6: A task rejected using the traditional approach 

 

 

We can distinguish between two cases: 

Case 1: _ _WL WLrem j unused j   _WL WLj ava j  

   T j  is rejected  by WL approach as well. 

Case 2: _ _WL WLrem j junused   _WL WLj ava j   

  T j  is accepted by WL approach while it is rejected by 

the traditional approach. 

Thus, task T j , although it is rejected using the traditional 

approach, it can be accepted using the new WL approach. □ 

 

The second situation is represented in Fig. 7 below. 

 

 

Fig 7: The same task accepted using our workload 

approach 

 

7. SIMULATION AND EXPERIMENTS  

7.1 Experiments Setup 

A simulation study that consists of a set of four experiments 

have been conducted to show the performance of our 

proposed approach relative to the traditional one. These 

experiments aimed to illustrate the behavior of the two 

approaches, in terms of the acceptance rate, for different 

values of arrival rates (λ) and departure rates (μ) of tasks. In 

each experiment a set of 10000 tasks are generated randomly 

as follows: 

1. A uniform distribution is used for the generation of the 

execution times of the tasks. The mean execution time 

(1/μ) is set to a fixed value during each experiment, 

which are {10, 15, 20, 25} for the four experiments 

respectively.  

2. Exponential probability distribution is used to generate 

the inter-arrival time between consecutive tasks. For 

each value of (1/λ), a set of 10000 tasks is generated. 

The values of mean inter-arrival time (1/λ) are {10, 20, 

..,120} sec during each experiment. Small values of λ 

means that the tasks arrive far apart while large values 

mean that the release times of the tasks are very close 

and the processor is loaded. 

3. The ratio (λ/μ) is called traffic intensity (it expresses 

processor utilization) and cannot exceed one since λ is 

always smaller than μ.  If this ratio is close to one it 

means that tasks have relatively large λ (fast arrival). 

Consequently, their scheduling on the processor will be 

more difficult than if the ratio is close to zero (relatively 

small λ or slow arrival).  

7.2 Simulation Results  
Figures 8, 9 and 10 show the acceptance rate vs. traffic 

intensity for each case of the average execution time. In all 

experiments, results show that the new approach outperforms 

the traditional one. Results also show that both algorithms 

rejects more tasks when tasks arrive faster (large values of 

λ/μ) than the processor can handle but the new approach is 

superior to the traditional one. In converse, both algorithms 

perform competitively well for small values of (λ/μ) where 

the tasks arrive far apart from each other. 

 

Figure 12 shows the improvement percentage in the 

acceptance rate achieved by the new approach over the 

traditional one in each experiment.  As shown in the graph the 

improvement diminished as the inter-arrival time increases.  

This is due to the fact that both approaches perform very well 

for large values of inter-arrival time (slow arrivals).  The 

graph also shows that we achieve higher amount of 

improvement for lower values of the inter-arrival time (fast 

arrivals). Hence, we conclude that the proposed approach has 

a major improvement when tasks arrive at high rate. In this 

later case, tasks are likely to be rejected if the traditional 

approach is used. Finally, results also show that the proposed 

approach tends to achieve better improvement for large values 

of mean execution time (longer tasks). This is because it is 

more difficult to have a constant available processing power 

during the task's deadline.   
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8. CONCLUSIONS 
This paper presented an improved processing power 

reservation algorithm that allocates the workloads of 

independent real time tasks , instead of allocating their 

processing powers, on a processor. The proposed algorithm 

improves the processor throughput (i.e. boosts the acceptance 

rate of the admitted tasks). Simulation results showed that the 

new algorithm is superior to the traditional one.  In this paper, 

we applied the algorithm to a stream of tasks submitted to a 

single processor. Our algorithm is also beneficial in 

scheduling real-time applications represented by task graphs 

in a multiprocessor environment such as cluster environment. 

Since rejecting a task of an application leads to rejecting the 

whole application, it is obvious that the new algorithm will 

overcome this problem and hence will produce a better 

performance in scheduling real-time task graphs on a cluster 

of computers.  

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

  Fig 11: Acceptance rate at mean execution time (1/μ) = 

25 and different traffic intensity 
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Fig 12: The improvement rate of the proposed approach 

over the traditional at different values of mean inter-

arrival and execution times.  

Fig 10: Acceptance rate at mean execution time (1/μ) = 

20 and different traffic intensity 

Fig 9:  Acceptance rate at mean execution time (1/μ) = 15 

and different traffic intensity 

Fig 8: Acceptance rate at mean execution time (1/μ) = 10 

and different traffic intensity 
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