

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

6

Real-Time Workload Allocation on a Uni-processor

ABSTRACT

The paper presents a novel allocation algorithm to allocate

independent real time tasks on a processor in a way that

improves the processor’s throughput (Processor’s throughput

is the number of tasks the processor can accept for execution).

The proposed approach allocates tasks’ workloads (task’s

workload is the percentage of work required by the processor

to execute the task) instead of their processing powers

(Processing power assigned to a task is a percentage of the

processor reserved to execute the task such that its deadline is

satisfied). To achieve our objective a variable processing

power is assigned to the task under consideration over its

deadline to satisfy its timing requirements instead of rejecting

it if a constant processing power cannot be guaranteed as in

previous CPU reservation approaches. Simulation results

revealed that the acceptance rate of the admitted tasks to a

certain processor using the new approach is superior to that

achieved using the traditional processing power reservation

approach.

Keywords
Workload allocation, Processing power, Processor utilization,

Scheduling real-time tasks.

1. INTRODUCTION
Deploying applications on multiprocessor and distributed

platforms require the mapping and allocation of the

application’s tasks to the different computing resources of the

platform such that pre-set objectives should be met. This

problem is known as scheduling problem. Various studies

have proven that finding an optimal schedule is an NP-

complete problem [17]. However, a large number of

scheduling algorithms which attempt to find a suboptimal

solution have been proposed. These algorithms can be

categorized mainly into two groups based on the type of

scheduled applications. The first category deals with non real

time applications and the second deals with real time

applications. The main concern in scheduling non real time

applications is to minimize the time required to execute all the

application’s tasks (makespan). While, the main concern in

scheduling real time applications is satisfying the timing

constraints of each task. Hence, scheduling real-time

applications is more challenging. Scheduling real time

applications on multiprocessor and distributed platforms is

achieved using a two-level hierarchical scheduler: 1) A high

level scheduler (partitioning algorithm) which is concerned

with how to partition the applications and assign their tasks to

the different processors. 2) Low level scheduler (CPU

reservation algorithm) that determines the execution order of

real-time independent tasks on each processor individually.

The overall performance of the scheduler depends on the

performance of its two components.

This paper proposes a new approach for processor reservation

that improves the utilization of the processor and increases its

throughput. In the previous approach for processing power

reservation [8],[9],[13], when a task is submitted, the

scheduler accepts the task if the available processing power

(PP) during the task's deadline is sufficient to satisfy its

deadline requirements (i.e, the min. available PP is at least

equals the required PP for the task to satisfy its deadline).

Otherwise the task and hence the whole application are

rejected. Our new approach depends on allocating the

workload of the task on the processor by assigning the task a

variable processing power that guarantees its timing

requirements instead of attempting reserve a constant

processing power over the time spent by the task in the

processor and rejecting the task if this PP cannot be provided

by the processor. Thereby, we increases the chance of

accepting more tasks on the processor and achieve better

processor throughput and utilization than previous approaches

[8],[9],[13].

The rest of this paper is organized as follows. Section 2

reviews some work related to real time task scheduling.

Section 3 discusses the previous approach for processing

power reservation. Section 4 discusses the proposed workload

allocation algorithm. Section 5 gives a numerical example

that illustrates our approach. In section 6, we provide a

theoretical analysis and prove the correctness of our approach.

Sections 7&8 describe the simulation experiments setup and

discuss the results. Section 9 concludes the paper.

2. RELATED WORK
A great deal of research has been conducted to find solutions

for the problem of scheduling real time tasks over various

computing platforms ranges from uni-processor to

geographically dispersed computing resources connected via

the internet. Scheduling algorithms in [17],[3] address the

problem of task allocation over Grid; The algorithms in

[2],[13],[20],[22],[23],[24] address the problem of task

allocation over a cluster; The algorithms in

[10],[11],[16],[6],[[18],[20] address the problem of allocating

tasks over the processors of multiprocessor and multicore

systems; while the algorithms in [5],[14], [15],[8], [9],[4]

have been proposed to ensure an efficient and predictable

scheduling of real-time independent tasks over a uni-

processor.

Algorithms for scheduling in real time systems can be

classified based on various criteria. They can be classified

Reda Ammar
Dept. of Computer Science

 and Engineering
University of Connecticut

Storrs, CT, USA

Abeer Hamdy
Dep. of Computers and systems,
Electronic Research Institute &

Faculty of ICS, British University in Egypt
 Egypt

Ahmed E. Youssef
Faculty of Engineering-Helwan
Helwan University, Cairo, Egypt
 & Dept. of Information Systems

KSU, Riyadh, KSA

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

7

based on the computing platforms as mentioned above, or

based on the characteristics of the real time applications.

Another classification to scheduling approaches could be

based on additional performance metrics along with satisfying

timing requirements such as minimizing number of processors

as in [12], reducing power consumption in processors with

dynamic voltage scaling as in [1], [18], [17], [23] or

achieving effective fault-tolerant in real time systems as in

[22], [24].

3. TRADITIONAL CPU RESERVATION

ALGORITHM
The traditional approach for CPU reservation [13] is based on

the operating system Rialto [8] that was developed by

Microsoft research. Rialto can schedule real time and non-real

time independent tasks on a uni-processor. In this approach,

the processing power reservations are made for the tasks to

ensure minimum execution rate that satisfies time constraints.

Each submitted real time task Ti is characterized in terms of

three parameters {Si , Fi , PPi } where , Si : is the task start

time, Fi: is the task finish time , PPi is the required processing

power for this task. The request for reservation is of the form

reserve x % processing power out of y % available

processing power for a certain time (task deadline). Where,

the available processing power of a processor ranges from 0

to 100%. According to this approach a task Ti is accepted if

the processor can provide available processing power not less

than the task’s required processing power over its deadline

interval.

The processor maintains a data structure called a reservation

table, such that all processing power reservations can be

honored continuously. Each entry in the table has information

about a scheduled task such as {Si , Fi , PPi }. Table 1 shows

a snap shot of the reservation table of a processor between

time t = 115 and t = 211. Fig.1 shows the execution profile

of these tasks, which we will call Reservation Graph (RG).

This graph shows the reserved processing power as a function

of time.

Reserved processing power at time t (i.e. ())PP tres is the

summation of all the required processing powers by the tasks

Tj allocated on the processor at t , i.e.

() ().....(1)PP t PP tres j
j
 The available processing power

on the processor at any time)(tPPava is given by:

() 1 ().....(2)PP t PP tava res

 (4.2)

The acceptance condition for any task T j is:

()(3)PP t PPava j [,]t S Fj j

i.e.

 min ()(4)min_ _

Fj
PP PP t PPava java j t S j

Ti Si Fi PPi

T1 115 135 0.2

T2 124 156 0.1

T3 143 172 0.3

T4 167 211 0.4

Algorithm1 specifies the steps to schedule tasks on a

processor using Rialto approach.

Algorithm 1: traditional approach

Input: a set of real-time tasks T },...,2,1{ nTTT

Output: RG, acceptance rate

Begin

1. acceptance_counter = 0

2. For each jT T

Compute:

 min ()min_ _

Fj
PP PP tavaava j t S j

 If ()min_ _PP PPj ava j then

 Increment acceptance_counter;

 Update ()PP tres in the window [,]S Fj j

as follows: () ()PP t PP t PPres res j

 3. acceptance rate = acceptanc_counter/n

End

The main disadvantage of this approach is that a task jT is

rejected if its constant required processing power cannot be

guaranteed for its deadline. This increases rejection rate of the

tasks. Consider for example the tasks in Table 1 and Figure1,

assume that a task T5 is submitted with the following

parameters: {S5=170, F5=180, PP5= 0.4}. Applying the

traditional algorithm we find that: min_ _5PP ava = 0.3.

Since PP5 > PPmin_ava-5,T5 is rejected as shown in Fig. 2 below.

Table 1. Reservation table for tasks T1, T2, T3, and T4.

Fig. 1: Reservation graph RG of the processor

time 115 124 135 143 156 167 172

211

.2

.8

.6

.4

1

Processing power

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

8

Fig. 2: T5 is rejected using the traditional approach

Our proposed algorithm modifies this algorithm by allocating

the task using its workload instead of its processing power to

boost the acceptance rate.

4. THE PROPOSED WORKLOAD

ALLOCATION APPROACH

In this approach, a variable processing power is assigned to

the allocated task jT to satisfy its deadline instead of

rejecting it if its constant required processing power cannot be

guaranteed over its deadline. A task T j is accepted if its

required workload is not greater than the available workload

_WLava j in the window [,S Fj j].

The workload WLj of a task Tj can be computed using

equation 5:

.....(5)WL PP dj j j

Where dj = Fj-Sj is the task deadline.

To calculate the available workload, the task window [

,S Fj j] is segmented into m j segments. Each segment

,g jk with time length equal to ,lk j and is characterized by

a constant available processing power (_ ,PPava k j).

Algorithm 2 describes this procedure in detail.

Algorithm 2: workload distribution (WL) approach

Input: a set of real-time tasks T { , , ..., }1 2T T Tn

Output: RG, Acceptance rate

Begin

1. acceptance_counter = 0

2. For each jT T

 Compute jdjPPjW L

(*)__ , ,1

mj
WL PP lavaava j k j k jk

 If ()_WL WLava j j then

 Increment acceptance_counter

 Call Algorithm 3 to update RG

 with workload of T j

 3. acceptance rate = acceptanc_counter/n

End

If a task T j is accepted; jW L is distributed over T j ’s

window by assigning T j a new variable processing power (

jPP (t); jFtjS) enough to satisfy jW L . To distribute

jW L , the available processing power of each segment in the

window [jFjS ,] is calculated using the Reservation Graph (

RG). If _ ,PPava k j is greater than or equal to jPP , then a

processing power equal to jPP is reserved for T j over this

segment, otherwise, a processing power equal to _ ,PPava k j

is reserved for T j and accumulate the remaining workload,

)_ _ , ,WL (PP - PP * lrem j j ava k j k j . The accumulated

remaining workload is then distributed over the segments that

have available processing power. This procedure is described

in detail in algorithm 3.

Algorithm 3: update RG (allocate accepted task on RG)

Input: a real-time task, T j

Output: updated RG

Begin

1. Initialize 0_WLrem j

2. For (1, ,)k k m kj

 If (, _PP PPjk j ava) then

 _ _, ,PP PP PPres res jk j k j

 Else

 1 _ , _ , _ ,PP PP PPres k j res k j ava k j

jk* ljkava - PPj (PP jrem W L jremWL ,),___

3. 1k

4. While (0_WLrem j)

 If (1)_ ,PPres k j

 Compute the unused load:

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

9

 _ , _ , ,WL PP * lunused k j ava k j k j

 If (__ ,WL WLrem junused k j
) then

 1 _ ,PP res k j

 _ _ _ ,WL WL - WL j rem j rem uused k j

 1k k

 Else

_

_ , _ ,
,

WLrem j
PP PP res k j res k j

lk j

 0_WL rem j

 Else

 1k k

End

5. A NUMERICAL EXAMPLE

Consider the reservation table1 again, as we have seen task

5T has been rejected using the traditional approach, but when

applying our approach:

 The required workload:

 5WL = 0.4 * (180-170) = 4

 The available workload

180

_5
170

WLava
t

 = (172-170) * 0.3 + (180-172) * 0.6 = 5.4

 Since _5WLava > 5WL then 5T is accepted

 The new ()5PP t in the window]5,5[FS

 is calculated as follows:

 The window]5,5[FS is partitioned into two segments:

 1,5g (170< t <172) & 2,5g (172< t <200)

 1. Segment 1,5g (170< t <172)

 Since _1,5PPava = 0.3 < 5PP , then

 _1,5PPres = 1

_5WLrem = (0.4 - 0.3) * (172-170) = 0.2

 2. Segment 2,5g (172< t <200)

 Since 2,5_PP av = 0.6 > 5PP , then

 _2,5PPres = 5_2,5PP PPres = 0.8

Now, the remaining workload 5_remWL will be distributed

over the period (172<t<180). The new processing power will

be:

)172180(

2.0

5,2_5,2_

 resPPresPP

 = 0.8+0.025=0.825

Figures (3a-d) illustrate the steps of our algorithm and figure

4 shows the RG after accepting and allocating T5 on the

processor.

Fig. 3a: Step 1, computing required workload for T5

Fig. 3b: Step 2, computing available workload

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

10

Fig. 3c: Step 3, computing remaining workload

Fig. 3d: Step 4, distributing remaining workload

6. THEORETICAL ANALYSIS OF OUR

APPROACH

In this section we prove that our approach (WL approach)

outperforms the traditional approach or in the worst case

equals it by providing the following two theories:

Theorem 1: If a task is accepted on a processor using the

traditional approach, then it will be accepted using the WL

approach.

Proof: Suppose that T j is a task of parameters (

, ,)S F PPj j j . If T j is accepted using Algorithm 1 then

according to inequality 4, for all segments
,gk j

in [,]S Fj j ,

we have _ ,PP PPjava k j as shown in Fig. 5. From this

graph we can write formulas for _WLava j and WL j as

follows:

(*)_ , ,1

mj
WL PP lava j ava_k j k jk

…… (6)

(*),1

mj
WL PP lj j k jk

….. (7)

Since _ ,PP PPjava k j ,gk j within [,]S Fj j , from

equations (6 and 7), we conclude that: _WL WLava j j

which means that the task is also accepted using Algorithm 2.

Theorem 4.2: If T j is rejected using the traditional approach,

it can be accepted by WL, it may be accepted by WL

approach.

Proof: If task T j is rejected by Algorithm 4.1 this means that

the condition _ ,PP PPj ava k j is not satisfied for at least

.80

7

200

.2

.6

.4

1

115 124 135 143 156 167 172 211

Processing power

Fig. 4: RG after accepting T5

Fig. 5: A task accepted using traditional approach

is also accepted using WL approach

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

11

one segment
,gk j

 within [,]S Fj j as shown in Fig. 6. From

this graph we can write WL j and _WLava j as follows:

__WL WL WLj rem jadd j …… (8)

_ _ _WL WL WLava j jadd j unused …… (9)

Fig 6: A task rejected using the traditional approach

We can distinguish between two cases:

Case 1: _ _WL WLrem j unused j _WL WLj ava j

 T j is rejected by WL approach as well.

Case 2: _ _WL WLrem j junused _WL WLj ava j

 T j is accepted by WL approach while it is rejected by

the traditional approach.

Thus, task T j , although it is rejected using the traditional

approach, it can be accepted using the new WL approach. □

The second situation is represented in Fig. 7 below.

Fig 7: The same task accepted using our workload

approach

7. SIMULATION AND EXPERIMENTS

7.1 Experiments Setup

A simulation study that consists of a set of four experiments

have been conducted to show the performance of our

proposed approach relative to the traditional one. These

experiments aimed to illustrate the behavior of the two

approaches, in terms of the acceptance rate, for different

values of arrival rates (λ) and departure rates (μ) of tasks. In

each experiment a set of 10000 tasks are generated randomly

as follows:

1. A uniform distribution is used for the generation of the

execution times of the tasks. The mean execution time

(1/μ) is set to a fixed value during each experiment,

which are {10, 15, 20, 25} for the four experiments

respectively.

2. Exponential probability distribution is used to generate

the inter-arrival time between consecutive tasks. For

each value of (1/λ), a set of 10000 tasks is generated.

The values of mean inter-arrival time (1/λ) are {10, 20,

..,120} sec during each experiment. Small values of λ

means that the tasks arrive far apart while large values

mean that the release times of the tasks are very close

and the processor is loaded.

3. The ratio (λ/μ) is called traffic intensity (it expresses

processor utilization) and cannot exceed one since λ is

always smaller than μ. If this ratio is close to one it

means that tasks have relatively large λ (fast arrival).

Consequently, their scheduling on the processor will be

more difficult than if the ratio is close to zero (relatively

small λ or slow arrival).

7.2 Simulation Results
Figures 8, 9 and 10 show the acceptance rate vs. traffic

intensity for each case of the average execution time. In all

experiments, results show that the new approach outperforms

the traditional one. Results also show that both algorithms

rejects more tasks when tasks arrive faster (large values of

λ/μ) than the processor can handle but the new approach is

superior to the traditional one. In converse, both algorithms

perform competitively well for small values of (λ/μ) where

the tasks arrive far apart from each other.

Figure 12 shows the improvement percentage in the

acceptance rate achieved by the new approach over the

traditional one in each experiment. As shown in the graph the

improvement diminished as the inter-arrival time increases.

This is due to the fact that both approaches perform very well

for large values of inter-arrival time (slow arrivals). The

graph also shows that we achieve higher amount of

improvement for lower values of the inter-arrival time (fast

arrivals). Hence, we conclude that the proposed approach has

a major improvement when tasks arrive at high rate. In this

later case, tasks are likely to be rejected if the traditional

approach is used. Finally, results also show that the proposed

approach tends to achieve better improvement for large values

of mean execution time (longer tasks). This is because it is

more difficult to have a constant available processing power

during the task's deadline.

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

12

8. CONCLUSIONS
This paper presented an improved processing power

reservation algorithm that allocates the workloads of

independent real time tasks , instead of allocating their

processing powers, on a processor. The proposed algorithm

improves the processor throughput (i.e. boosts the acceptance

rate of the admitted tasks). Simulation results showed that the

new algorithm is superior to the traditional one. In this paper,

we applied the algorithm to a stream of tasks submitted to a

single processor. Our algorithm is also beneficial in

scheduling real-time applications represented by task graphs

in a multiprocessor environment such as cluster environment.

Since rejecting a task of an application leads to rejecting the

whole application, it is obvious that the new algorithm will

overcome this problem and hence will produce a better

performance in scheduling real-time task graphs on a cluster

of computers.

 Fig 11: Acceptance rate at mean execution time (1/μ) =

25 and different traffic intensity

50

60

70

80

90

100

1 0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11 0.1

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time =10

traditional

WL

50

60

70

80

90

100

1 0.75 0.5 0.38 0.3 0.25 0.21 0.19 0.17 0.15

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 15

traditional
WL

50

60

70

80

90

100

1 0.67 0.5 0.4 0.33 0.29 0.25 0.22 0.2

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 20

traditional

WL

50

60

70

80

90

100

1 0.83 0.63 0.5 0.42 0.36 0.31 0.28 0.25

%
 A

c
c
e
p
ta

n
c
e
 R

a
te

Traffic Intensity

Mean Execution Time = 25

traditional

WL

0

10

20

30

30 40 50 60 70 80 90 100

%
 I
m

p
ro

v
e
m

e
n
t

Mean Interarrival Time

Improvement

1/µ = 10
1/µ = 15
1/µ = 20
1/µ = 25

Fig 12: The improvement rate of the proposed approach

over the traditional at different values of mean inter-

arrival and execution times.

Fig 10: Acceptance rate at mean execution time (1/μ) =

20 and different traffic intensity

Fig 9: Acceptance rate at mean execution time (1/μ) = 15

and different traffic intensity

Fig 8: Acceptance rate at mean execution time (1/μ) = 10

and different traffic intensity

Communications on Applied Electronics (CAE)
Foundation of Computer Science FCS
Volume 1– No.1, December 2014 – www.caeaccess.org

13

9. REFERENCES
[1] Aydin, H., Melhem, R., Mosse, D. and Meja-Alvarez, P.,

2001, Dynamic and Aggressive Scheduling techniques

for power-aware real-time systems, In Proceedings of the

22nd IEEE Real-Time systems Symposium.

[2] Birkenheuer, G. and Brinkmann, A., 2011, Reservation

based overbooking for HPC clusters, In Proceedings of

IEEE International Conference on Cluster computing.

[3] Caniou, Y., Charrier, G., Desprez F., 2010 ,Analysis of

tasks reallocation in a dedicated grid environment, In

Proceedings of IEEE international conference on cluster

computing.

[4] Deng, Z., Liu, J.W.-s and Sun, S., 1996, Dynamic

scheduling of hard real-time applications in open system

environment, Technical Report, University of Illinois,

USA.

[5] Ford, B. and Susarla, S., 1996, CPU inheritance

scheduling, operating systems review.

[6] Gioiosa, R., McKee, S. A., Valero, M., 2010, Designing

OS for HPC Applications: Scheduling, In Proceedings of

IEEE International conference on cluster computing.

[7] H. Heidari and A. Chalechale, “Scheduling in

Multiprocessor System using Genetic Algorithm”,

International Journal of Advanced Science and

Technology, june 2012.

[8] Jones, M.B., Roşu, D., Roşu, M., 1997, CPU

Reservations and Time Constraints: Efficient,

Predictable Scheduling of Independent Activities, In

Proceedings of the 16th ACM Symposium on Operating

System Principles.

[9] Jones, M.B. 2001, Two case studies in predictable

application scheduling using Rialto/NT , In Proceedings

of 7th Real-Time Technology and Applications

Symposium.

[10] M. Lombardi, M. Milano, L. Benini, “Robust Scheduling

of Task Graphs under Execution Time Uncertainty”,

IEEE transactions on computers, 2011.

[11] Niemeier, M., Wiese, A., Baruah, S., 2011, Partitioned

real-time scheduling on heterogeneous shared-memory

multiprocessors, In Proceedings of the 23rd Euromicro

Conference on Real-Time Systems.

[12] O. Jaewon and W. Chisu, “Genetic Algorithm Based

Real Time Task Scheduling with Multiple Goals”,

Journal of systems and software, 2004.

[13] R. Ammar, A. Alhamdan, “Scheduling real-time fork-

join structures in cluster computing”, Int. Journal of High

Performance Computing and Networking , Vol.3, No.4,

2005, pp.262 – 271.

[14] Regehr, J., J. and Stankovic, J.A., 2001, Augmented

CPU reservations: Towards predictable execution on

general-purpose operating systems, In Proceedings of the

IEEE Real-Time Technology and Applications.

[15] Stoica, I., Abdelwahab, H., Effay, K., Baruah, S.K.,

Gehrke, J.E. and Plaxton, C.G., 1996, A proportional

share resource allocation algorithm for real-time, time-

shared systems, In Proceedings of 17th IEEE real-time

systems symposium.

[16] Satish, N. R., Ravindran, K., Keutzer, K., 2008,

Scheduling task dependence graphs with variable task

execution times onto heterogeneous multiprocessors, In

Proceedings of the 8th ACM international conference on

Embedded software.

[17] S.Baskaran, P. Thambidurai, “Energy efficient real-time

scheduling in distributed systems”, IJCSI International

journal of computer science issues, 2010.

[18] S. Jin, G. Schiavone · D. Turgut, “A performance study

of multiprocessor task scheduling algorithms”, Journal of

Supercomputer, 2008.

[19] W. Y. Lee, “Energy-Efficient Scheduling of Periodic

Real-Time Taks on Lightly Loaded Multicore

Processors”, IEEE Transactions on Parallel and

Distributed Systems, 2012.

[20] W.Y. Lee, S.J. Hong, J. Kim, “On-line scheduling of

scalable real-time tasks on multiprocessor systems”,

Journal of Parallel and Distributed Computing, 2003.

[21] X. Lin, A. Mamat, Y. Lu, J. Deogun, S. Goddard , “Real-

time scheduling of divisible loads in cluster computing

environments”, International Journal of Parallel and

Distributed Computing, Elsevier, 2010.

[22] X. Zhu, X. Qin, M. Qiu, “QoS- Aware fault-Tolerant

Scheduling for Real Time Tasks on Heterogeneous

clusters” IEEE transactions on Computers, 2011.

[23] X. Zhu, C. He, K. Li, X. Kin, “Adaptive energy-

efficient scheduling for real-time tasks on DVS-enabled

heterogeneous clusters” , Journal of parallel and

distributed computing, 2012.

[24] Zhu, X., Zhu, J., Ma, M., Qiu, D., 2010 ,SAQA: A self

adaptive QoS-aware Scheduling Algorithms for Real

Time Tasks on Heterogeneous Clusters, In Proceedings

of the 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing.

http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1639154
http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/jhome.php?jcode=ijhpcn
http://www.inderscience.com/info/inarticletoc.php?jcode=ijhpcn&year=2005&vol=3&issue=4

